
V0000000

VMs + Containers = The Perfect Wedding

Sreejith Anujan

sreejith@redhat.com

1

V0000000

What is KubeVirt?

2

V0000000

Containers are not virtual machines

3

Infrastructure

Operating System

App 1 App 3App 2

Hypervisor

Guest
OS

Guest
OS

Guest
OS

Infrastructure

Virtualization Containerization

App 1 App 3App 2

● Containers are process isolation

● Kernel namespaces provide isolation and

cgroups provide resource controls

● No hypervisor needed for containers

● Contain only binaries, libraries, and tools

which are needed by the application

● Ephemeral

V0000000

Virtual machines can be put into containers

4

● A KVM virtual machine is a process
● Containers encapsulate processes
● Both have the same underlying

resource needs:
○ Compute
○ Network
○ (sometimes) Storage

V0000000

KubeVirt

5

● Virtual machines
○ Running in containers
○ Using the KVM hypervisor

● Scheduled, deployed, and managed by Kubernetes
● Integrated with container orchestrator resources and

services
○ Traditional Pod-like SDN connectivity and/or

connectivity to external VLAN and other networks
via multus

○ Persistent storage paradigm (PVC, PV,
StorageClass)

V0000000

VM containers use KVM

6

● OpenShift Virtualization uses KVM, the Linux kernel
hypervisor

● KVM is a core component of the Linux kernel
○ KVM has 10+ years of production use: Red Hat

Virtualization, Red Hat OpenStack Platform, and
RHEL all leverage KVM, QEMU, and libvirt

● QEMU uses KVM to execute virtual machines
● libvirt provides a management abstraction layer

HARDWARE

RHCOS
KVM

CPU/RAM STORAGE NETWORK

DRIVER DRIVER DRIVER

OTHER APPS
QEMU
libvirt

V0000000

Built with
Kubernetes

7

V0000000

Virtual machines in a container world

8

● Provides a way to transition application components
which can’t be directly containerized into a Kubernetes
system
○ Integrates directly into existing k8s clusters
○ Follows Kubernetes paradigms:

■ Container Networking Interface (CNI)
■ Container Storage Interface (CSI)
■ Custom Resource Definitions (CRD, CR)

● Schedule, connect, and consume VM resources as
container-native

CoreOS

Kubernetes

Physical Machine

VM pod App pod

V0000000

Virtualization native to Kubernetes

9

● Operators are a Kubernetes-native way to introduce
new capabilities

● New CustomResourceDefinitions (CRDs) for native
VM integration, for example:
○ VirtualMachine

○ VirtualMachineInstance

○ VirtualMachineInstanceMigration

○ DataVolume

V0000000

Containerized virtual machines

10

Kubernetes resources
● Every VM runs in a launcher pod. The launcher process will

supervise, using libvirt, and provide pod integration.

Red Hat Enterprise Linux / Fedora / CentOS Stream
● libvirt and qemu are mature, have high performance,

provide stable abstractions, and have a minimal overhead.

Security - Defense in depth
● Immutable CoreOS by default, SELinux MCS, plus KVM

isolation

Storage

Network

CPU

Memory

Device

V0000000

Using VMs and containers together

11

● Virtual Machines connected to pod networks
are accessible using standard Kubernetes
methods:
○ Service
○ Route
○ Ingress

● Network policies apply to VM pods the same
as application pods

● VM-to-pod, and vice-versa, communication
happens over SDN or ingress depending on
network connectivity

V0000000

Managed with
Kubernetes

12

V0000000

Virtual Machine Management

13

● Create, modify, and destroy virtual
machines, and their resources, using
the OpenShift web interface or CLI

● Use the virtctl command to
simplify virtual machine interaction
from the CLI

V0000000

Create VMs

14

V0000000

Virtual Machine creation

15

● Streamlined and simplified creation via the GUI or
create VMs programmatically using YAML

● Full configuration options for compute, network, and
storage resources
○ Clone VMs from templates or import disks using

DataVolumes
○ Pre-defined and customizable presets for

CPU/RAM allocations
○ Workload profile to tune KVM for expected

behavior
● Import VMs from VMware vSphere or Red Hat

Virtualization

V0000000

Create Virtual Machine - General

16

● Source represents how the VM will boot
○ Boot via PXE, optionally diskless
○ URL will import a QCOW2 or raw disk image

using a DataVolume
○ Container uses a container image, pulled

from a registry, for the disk
○ Disk uses an existing PVC

● Flavor represents the preconfigured CPU and
RAM assignments
○ Tiny = 1 vCPU and 1GB RAM, Small = 1 vCPU

and 2GB RAM, etc.
● Workload profile defines the category of

workload expected and is used to set KVM
performance flags

V0000000

Create Virtual Machine - Networks

17

● Add or edit network adapters
● One or more network connections

○ Pod network for the default SDN
○ Additional multus-based interfaces for

specific connectivity
● Multiple NIC models for guest OS compatibility or

paravirtualized performance with VirtIO
● Masquerade, bridge, or SR-IOV connection types
● MAC address customization if desired

V0000000

Create Virtual Machine - Storage

18

● Add or edit persistent storage
● Disks can be sourced from

○ Imported QCOW2 or raw images
○ New or existing PVCs
○ Clone existing PVCs

● Use SATA/SCSI interface for compatibility or
VirtIO for paravirtual performance

● For new or cloned disks, select from available
storage classes
○ Customize volume and access mode as

needed

V0000000

Create Virtual Machine - Advanced

19

● Customize the operating system deployment
using cloud-init scripts
○ Guest OS must have cloud-init installed
○ RHEL, Fedora, etc. cloud images

● Attach ISOs to the VM CD/DVD drive
○ ISOs stored in container images

(registry), existing PVC, or imported from
URL

V0000000

Create Virtual Machine - Review

20

● A summary of the decisions made
● Warnings and other important information

about the configuration of the VM are
displayed

● Choose to automatically power on the VM
after creation

V0000000

Virtual machines

21

V0000000

Containerized virtual machines

22

● Inherit many features and functions from Kubernetes
○ Scheduling, high availability, attach/detach resources

● Containerized virtual machines have the same characteristics as
non-containerized
○ CPU, RAM, etc. limitations dictated by libvirt and QEMU
○ Linux and Windows guest operating systems

● Storage
○ Use Persistent Volumes Claims (PVCs) for VM disks
○ Containerized Data Importer (CDI) import VM images

● Network
○ Inherit pod network by default
○ Multus enables direct connection to external network

V0000000

 CoreOS Host

KubeVirt Container

Containerizing KVM

23 oVirt Host

oVirt Console / CLI

vdsm

libvirt

QEMU / KVM

VM

oVirt

OpenShift Console / CLI

kubelet

libvirt

QEMU / KVM

VM

KubeVirt

 Compute

OpenStack Horizon / CLI

nova-compute

libvirt

QEMU / KVM

VM

OpenStack

V0000000

Architectural Overview

24

kubelet

(DaemonSet) Pod

virt-handler

Cluster Services Nodes

VM Pod

virt-launcher

Other Pod(s)

container 1

libvirtd container 2

VM container n

API Server

virt-controller

V0000000

Adding virtualization to the Kubernetes API

25

CRD and aggregated API servers
● These are the ways to extend the Kubernetes API in

order to support new entities
● For users, the new entities are indistinguishable from

native resources

Single API entry point for all workloads
● All workloads (containers, VMs, and serverless) are

managed through a single API

