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What is KubeVirt?
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Containers are not virtual machines
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● Containers are process isolation

● Kernel namespaces provide isolation and 

cgroups provide resource controls

● No hypervisor needed for containers

● Contain only binaries, libraries, and tools 

which are needed by the application

● Ephemeral
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Virtual machines can be put into containers
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● A KVM virtual machine is a process
● Containers encapsulate processes
● Both have the same underlying 

resource needs:
○ Compute
○ Network
○ (sometimes) Storage
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KubeVirt
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● Virtual machines
○ Running in containers
○ Using the KVM hypervisor

● Scheduled, deployed, and managed by Kubernetes
● Integrated with container orchestrator resources and 

services
○ Traditional Pod-like SDN connectivity and/or 

connectivity to external VLAN and other networks 
via multus

○ Persistent storage paradigm (PVC, PV, 
StorageClass)
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VM containers use KVM

6

● OpenShift Virtualization uses KVM, the Linux kernel 
hypervisor

● KVM is a core component of the Linux kernel
○ KVM has 10+ years of production use: Red Hat 

Virtualization, Red Hat OpenStack Platform, and 
RHEL all leverage KVM, QEMU, and libvirt

● QEMU uses KVM to execute virtual machines
● libvirt provides a management abstraction layer
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Built with 
Kubernetes
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Virtual machines in a container world
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● Provides a way to transition application components 
which can’t be directly containerized into a Kubernetes 
system
○ Integrates directly into existing k8s clusters
○ Follows Kubernetes paradigms:

■ Container Networking Interface (CNI) 
■ Container Storage Interface (CSI)
■ Custom Resource Definitions (CRD, CR)

● Schedule, connect, and consume VM resources as 
container-native
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Virtualization native to Kubernetes
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● Operators are a Kubernetes-native way to introduce 
new capabilities

● New CustomResourceDefinitions (CRDs) for native 
VM integration, for example:
○ VirtualMachine

○ VirtualMachineInstance

○ VirtualMachineInstanceMigration

○ DataVolume
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Containerized virtual machines
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Kubernetes resources
● Every VM runs in a launcher pod. The launcher process will 

supervise, using libvirt, and provide pod integration.

Red Hat Enterprise Linux / Fedora / CentOS Stream
● libvirt and qemu are mature, have high performance, 

provide stable abstractions, and have a minimal overhead.

Security - Defense in depth
● Immutable CoreOS by default, SELinux MCS, plus KVM 

isolation
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Using VMs and containers together
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● Virtual Machines connected to pod networks 
are accessible using standard Kubernetes 
methods:
○ Service
○ Route
○ Ingress

● Network policies apply to VM pods the same 
as application pods

● VM-to-pod, and vice-versa, communication 
happens over SDN or ingress depending on 
network connectivity
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Managed with 
Kubernetes
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Virtual Machine Management
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● Create, modify, and destroy virtual 
machines, and their resources, using 
the OpenShift web interface or CLI

● Use the virtctl command to 
simplify virtual machine interaction 
from the CLI
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Create VMs
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Virtual Machine creation
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● Streamlined and simplified creation via the GUI or 
create VMs programmatically using YAML

● Full configuration options for compute, network, and 
storage resources
○ Clone VMs from templates or import disks using 

DataVolumes
○ Pre-defined and customizable presets for 

CPU/RAM allocations
○ Workload profile to tune KVM for expected 

behavior
● Import VMs from VMware vSphere or Red Hat 

Virtualization
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Create Virtual Machine - General
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● Source represents how the VM will boot
○ Boot via PXE, optionally diskless
○ URL will import a QCOW2 or raw disk image 

using a DataVolume
○ Container uses a container image, pulled 

from a registry, for the disk
○ Disk uses an existing PVC

● Flavor represents the preconfigured CPU and 
RAM assignments
○ Tiny = 1 vCPU and 1GB RAM, Small = 1 vCPU 

and 2GB RAM, etc.
● Workload profile defines the category of 

workload expected and is used to set KVM 
performance flags
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Create Virtual Machine - Networks
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● Add or edit network adapters
● One or more network connections

○ Pod network for the default SDN
○ Additional multus-based interfaces for 

specific connectivity
● Multiple NIC models for guest OS compatibility or 

paravirtualized performance with VirtIO
● Masquerade, bridge, or SR-IOV connection types
● MAC address customization if desired
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Create Virtual Machine - Storage
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● Add or edit persistent storage
● Disks can be sourced from 

○ Imported QCOW2 or raw images
○ New or existing PVCs
○ Clone existing PVCs

● Use SATA/SCSI interface for compatibility or 
VirtIO for paravirtual performance

● For new or cloned disks, select from available 
storage classes
○ Customize volume and access mode as 

needed
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Create Virtual Machine - Advanced
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● Customize the operating system deployment 
using cloud-init scripts
○ Guest OS must have cloud-init installed
○ RHEL, Fedora, etc. cloud images

● Attach ISOs to the VM CD/DVD drive
○ ISOs stored in container images 

(registry), existing PVC, or imported from 
URL
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Create Virtual Machine - Review
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● A summary of the decisions made
● Warnings and other important information 

about the configuration of the VM are 
displayed

● Choose to automatically power on the VM 
after creation
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Virtual machines
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Containerized virtual machines
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● Inherit many features and functions from Kubernetes
○ Scheduling, high availability, attach/detach resources

● Containerized virtual machines have the same characteristics as 
non-containerized
○ CPU, RAM, etc. limitations dictated by libvirt and QEMU
○ Linux and Windows guest operating systems

● Storage
○ Use Persistent Volumes Claims (PVCs) for VM disks
○ Containerized Data Importer (CDI) import VM images

● Network
○ Inherit pod network by default
○ Multus enables direct connection to external network
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        CoreOS Host

KubeVirt Container

Containerizing KVM
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Architectural Overview
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Adding virtualization to the Kubernetes API
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CRD and aggregated API servers
● These are the ways to extend the Kubernetes API in 

order to support new entities
● For users, the new entities are indistinguishable from 

native resources

Single API entry point for all workloads
● All workloads (containers, VMs, and serverless) are 

managed through a single API


