GETTING STARTED WITH
DOCKER AND SWARM

Prepared by Matthew Cengia

e Email: mattcen@mattcen.com
o Twitter: @mattcen
e Mastodon: @mattcen@aus.social

e Matrix: mattcen:matrix.or
@mattcen | #lca2021 | #do kerintro | github.com/mattcen/lca2021-docker-talk

License: CC-BY-SA 4.0

mailto:mattcen@mattcen.com
https://twitter.com/mattcen
https://aus.social/@mattcen
https://matrix.to/#/@mattcen:matrix.org
https://creativecommons.org/licenses/by-sa/4.0/

ACKNOWLEDGEMENT OF COUNTRY

WHY ARE WE TALKING ABOUT DOCKER?

WHAT IS DOCKER?

WAIT, WHAT ARE CONTAINERS?

e Not virtual machines, but similar in some ways

e A combination of:

» Adisk image/filesystem chroot
= Namespaces (what you can see, e.g. filesystem, processes)
= Cgroups (what you can do, e.g. access to system resources like devices)

e Can be created wit

More detail in Liz

N a hanc

ful of standard Linux commands

Rice's ta

Kk "Building a container from scratch in Go":

https://youtu.be/Utf-A4rODH8

https://youtu.be/Utf-A4rODH8

HOW CAN DOCKER AND CONTAINERS HELP?

e Consistent environment

e Segregation between apps

e Sandboxing and limiting privileges

e |solating code and data

e Simplify deployment

e Note: "containerising" apps needn't be a big unmanageable project

HUH?

INSTALLING DOCKER

On most Redhat- or Debian-based systems, you can do this:

$ curl -fsSL https://get.docker.com -o get-docker.sh

$ sudo sh get-docker.sh
S sudo usermod -aG docker "SUSER

Remember to log out and back in for the user group change to take effect

IF YOU WANT TO PLAY ALONG

1. Create a Docker ID at https://hub.docker.com/signup

2. Browse to https://labs.play-with-docker.com/ and start a session

3. Click "Add new instance"

4.git clone https://github.com/mattcen/lca2021-docker-
talk

5.cd lca2021-docker-talk/demos

https://hub.docker.com/signup
https://labs.play-with-docker.com/

RUNNING OUR FIRST CONTAINER

Once Docker is running, we can do something like this:

$ docker run --rm -it ubuntu bash

Unable to find image 'ubuntu:latest' locally

latest: Pulling from library/ubuntu

da7391352a9b: Pull complete

14428a6d4bcd: Pull complete

2c2d948710£f2: Pull complete

Digest: sha256:c95a8e48bf88e9849f3e0£723d9f49fal2c5a00cfc6e60d2bc99d87555295e4c

Status: Downloaded newer image ubuntu:latest
root@6e4£7117321d:/

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 02:13 pts/0 00:00:00 bash
root 8 1 0 02:13 pts/0 00:00:00 ps -efa
root@6e4£7117321d:/

$

HOW ARE CONTAINER IMAGES CREATED?

e Filesystems that are usually built using a Dockerfile
e Can be based off otherimages
= Creates "layers"

= encouraging reusability
e Some images, like Ubuntu, aren't based off other images, but built from

scratch

DOCKERFILE

A basic Dockerfile might be:

ubuntu:20.04

echo "Hello World!"

docker build looks forfiles called Dockerfile by default:

$ cd ~/1lca2021-docker-talk/demos/docker file
S 1s -1
total 4

-Yw—-Y—-—-Y—-— 1 docker staff 43 Jan 20 02:38 Dockerfile
S

BUILDING A DOCKER IMAGE

The -t optionto docker build 'tags'the image with the name 'helloworld’

S docker build . -t helloworld
Sending build context to Docker daemon 25.09kB
Step 1/2 : FROM ubuntu:20.04
-—-> £643c72bc252
Step 2/2 : CMD echo "Hello World!"

——-> Running aca2515e7c8a

Removing intermediate container aca2515e7c8a
-—-> 2e1213f6dbl8

Successfully built 2el1213f6dbl8

Successfully tagged helloworld:latest

We then run a container based on that image with docker run again

S docker run --rm -it helloworld

Hello World!
$

ANOTHER DOCKERFILE

A more useful container might be:

$ cd ~/lca2021-docker-talk/demos/another docker file
S 1s -1
total 12

-Yw-Y—--r-—-— 1 docker staff 70 Jan 20 02:57 Dockerfile
—YW=Y==Y—— 1 docker staff 25 Jan 20 02:46 index.html
—rwW-Y—-—-Y-—-— 1 docker staff 243 Jan 20 02:52 webserver.py

Dockerfile:

python:3.9.1-buster

8000
python webserver.py

index.html:

Hello World from Python!

webserver.py:

http.server
socketserver

PORT = 8000
Handler = http.server.SimpleHTTPRequestHandler
socketserver.TCPServer(("", PORT), Handler) httpd:
print("serving at port", PORT)
httpd.serve forever()

We can put all this together into an image called 'hellopython' with:

S docker build . -t hellopython
Sending build context to Docker daemon 4.096kB
Step 1/4 : FROM python:3.9.1l-buster
——-> da24d18bf4bf
Step 2/4 : COPY
——=> 2e0b56c961fb
Step 3/4 : EXPOSE 8000
——-> Running 3e08636e7cbb
Removing intermediate container 3e08636e7cb6
-—-> c4079aa09149
Step 4/4 : CMD python webserver.py
——-> Running edfb064£f6438
Removing intermediate container e4fb064f6438
———> 74£fb999e2£f10
Successfully built 74fb999e2f10
Successfully tagged hellopython:latest

And then when we run it:

$ docker run --rm -d -p 8000:8000 hellopython

a2c890dd24c63852d373598ed934fcalf66b4605f8b8e19a244£2011925d3016

And test it:

$ curl http://localhost:8000
<!DOCTYPE html>

<html><body>

<p>Hello World from Python!</p>
</body></html>

And then we can stop (and, because of ——rm above, remove) the container:

S docker container ls

CONTAINER ID IMAGE COMMAND CREATED
a2c890dd24c6 hellopython "/bin/sh -c 'python .." 15 seconds ago
S docker container stop a2c

az2c

S docker container ls -a
CONTAINER ID IMAGE COMMAND CREATED STATUS

$

DOCKER SUMMARY

Runs application in environment with known disk image

Consistent between development, testing, and production environments
Keeps app separate and "contained" so it doesn't affect host OS

Makes management, upgrading, and removal trivial

RUNNING MULTI-CONTAINER APPLICATIONS

e Multiple services, e.g. a web app + database?
e We can group these together
e Can be done manually with Docker, but Docker Compose is more elegant

INSTALLING docker-compose

sudo curl -L \
"https://github.com/docker/compose/releases/download/1.27.4/docker-compose-$ (uname -s)-$
-0 /usr/local/bin/docker-compose

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 651 100 651 0 0 698 0 ——t——2—= ——2——2—- ——31——:1-—-— 697

100 11.6M 100 11.6M 0 0 2231k O 0:00:05 0:00:05 --:--:-- 3433k
$ sudo chmod +x /usr/local/bin/docker-compose

USING docker-compose

e Docker Compose looks for files called docker-compose.yml in current
directory

e YAML file containing configurations for groups of related containers

o We'll make a simple web app that stores data in Redis

REALLY SIMPLE WEB APP

$ cd ~/lca2021-docker-talk/demos/simple web app
S 1s -1
total 16

-rw-Yr—--r—-— 1 docker :34 Dockerfile
-rw-r—--r—-— 1 docker :35 docker-compose.yml
-Irw-Yr—--r—-— 1 docker :35 requirements.txt
-rw-r—--r—-— 1 docker :35 webapp.py

webapp.py:

redis
flask Flask

hello = Flask(_ name)
cache redis.Redis(host="redis')

refresh count():

cache.incr('refresh count')

hi():

'Hello Flask! Refresh count: {}.\n'.format(refresh count())

requirements.txt:

flask
redis

Dockerfile:

python:3.7-alpine
/app
FLASK APP=webapp.py
FLASK _RUN HOST=0.0.0.0
apk add --no-cache gcc musl-dev linux-headers
requirements.txt requirements.txt
pip install -r requirements.txt
5000

["flask"”, "run"]

docker-compose.yml:

version: "3.1"
services:
web:
build:
image: mattcen/simplewebapp
ports:
- "5000:5000"
redis:
image: "redis:alpine”

LET'S RUN IT!

S docker-compose up -d
Creating network "simple web app default" with the default driver
Building web
Step 1/10 : FROM python:3.7-alpine
-—--> T72e4d4efBabf8e
[o..]
Step 8/10 : EXPOSE 5000
-—-> Running b86b56ac23cd
Removing intermediate container b86b56ac23cd
-—-> 71041c9a3620
Step 9/10 : COPY
—---> d5a38cfle575
Step 10/10 : CMD ["flask", "run"]
——-> Running b8fcbl6313bd
Removing intermediate container b8fcbl6313bd
--=> 9f793cb0105a

Successfully built 9£793cb0105a

Successfully tagged mattcen/simplewebapp:latest

WARNING: Image service web was built because it did not already exist. To rebuild this
Creating simple web app web 1

Creating simple web app redis 1

AND TESTIT

redo Xy 2; curl http://localhost:5000;
Flask! Refresh count: 1.

Flask! Refresh count: 2.
Flask! Refresh count: 3.

Check it's actually modifying Redis:

$ docker-compose exec redis redis-cli get refresh count

ll3|l

AND CLEAN UP

S docker-compose down
Stopping simple web app redis 1
Stopping simple web app web 1

Removing simple web app redis 1
Removing simple web app web 1
Removing network simple web app default

PUSHING A DOCKER IMAGE

e |f you have a Docker Hub account, you can store images there

e ... after authenticating to your Docker Engine with docker login
e These images can then be used by you or others

e I'll pushthismattcen/simplewebapp image now for later use

$ docker push mattcen/simplewebapp

The push refers to repository [docker.io/mattcen/simplewebapp]
2c4609cl55a4: Pushed

5c¢£997dele7c: Pushed

43be206b777e: Pushed

0£309bc31411: Pushed

072957566e0f: Pushed

e2e42bb5b297: Mounted from library/python

e8f104f729a5: Mounted from library/python

5b2calc5db87: Mounted from library/python

b688d33030ff: Mounted from library/python

777b2c648970: Mounted from library/redis

latest: digest: sha256:abbd355bfl17a52e2fc2df75374fa5642309a50£8e988b888b506ffc649c99e6d si:

DOCKER COMPOSE SUMMARY

o Abstracts away Docker's functionality
e Automates creation, config, and management, of groups of containers

SCALING WITH DOCKER SWARM

Swarm mode is built into Docker Engine

A Container Orchestrator (like Kubernetes, but easier)

Can control Docker Engines on multiple machines

Suitable for runnning redundant containers in production

Swarm "Stacks" are groups of related containers

"Stack" files are the same format as docker-compose.yml. Yay reuse!

CREATING A DOCKER SWARM

Swarm is build directly into the standard Docker Engine, so we can trivially
create a single-node swarm like this:

nodel (manager)

docker@nodel:~$ docker swarm init
Swarm initialized: current node (gO0xlwpksgfxt7s3un5vgjjsnc) is now a manager.

To add a worker to this swarm, run the following command:

docker swarm join --token SWMTKN-1-5synm2ahj941bclud44c8tlms0oozzelubgxotdcrlm9dkf8méx—c

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instr

(May need docker swarm init --advertise-addr ethO)

ADDING NODES TO A SWARM

node2 (worker)

docker@node2:~$ docker swarm join --token SWMTKN-1-5synm2ahj941lbclu44c8tlmsOoozzelubgxotdcs

This node joined a swarm as a worker.

node3 (worker)

docker@node3:~$S docker swarm join --token SWMTKN-1-5synm2ahj941lbclu44c8tlmsOoozzelubgxotdct

This node joined a swarm as a worker.

LISTING SWARM NODES

nodel (manager)

docker@nodel:~$ docker node 1s
ID HOSTNAME STATUS AVAILABILITY
q0xlwpksgfxt7s3un5vgjjsnc * nodel Ready Active

o5hau890eda7nzwggrqlfc7if node?2 Ready Active
p5g9gdt2k09up8rlrr4nj20310 node3 Ready Active
docker@nodel:~$

DEPLOYING A STACK

We can use our existing docker-compose file for our simple web app to
deploy it as a stack:

dockerf@nodel:~$ docker stack deploy -c docker-compose.yml webapp
Ignoring unsupported options: build

Creating network webapp default
Creating service webapp web
Creating service webapp redis

e build unsupported in Swarm; needs pre-built image

e We pushed the image to Docker Hub earlier

e Because image is on Docker Hub, only local file we need is docker-
compose.yml

CHECKING STACK STATUS

List configured stacks:

docker@nodel:~S docker stack 1ls
NAME SERVICES ORCHESTRATOR

webapp 2 Swarm

List services within that stack:

docker@nodel:~$ docker stack services webapp

ID NAME MODE REPLICAS
oquv4i6jc947 webapp redis replicated 1/1

wdiyas5g6nwo webapp web replicated 1/1
$

REMOVING OUR STACK

dockerf@nodel:~$ docker stack rm webapp
Removing service webapp redis

Removing service webapp web
Removing network webapp default

RECAP

e Docker makes it easy to run software in a contained, secure, consistent
environment

e Docker Compose makes it easy to group several pieces of software together
Into an app

e Docker Swarm can run containers in production, across multiple physical
machines if desired

MIGRATING TO CONTAINERS

Production servers can run Docker Engine in single-node Swarm

No worse than non-Docker config

Can slowly migrate apps to containers

Still get some wins, like consistent deployment across environments
Makes it easy for developers to start working on your code

CONCLUSION

Give Docker a shot; it encourages good software design discipline, and gives lots
of flexibility!

