

OpenZFS and Linux

Who is this guy?

Nikolai Lusan
Email: nikolai _@_ lusan.id.au

IRC: Maliuta
 on Freenode and OFTC

mailto:_@_

OpenZFS
Now With Native Encryption!

Licensing

CDDL and GPL are considered incompatible, most
distributions will not build installers for containing ZFS

support.

Filesystems aren’t they fun?
No.

No.

They are not.

Why Not?
Data Loss
Bit Rot
Performance

Why ZFS?
● It’s cool
● Stable and established
● Robust
● Good performance – even better with tuning
● Scales up well
● Allows better usage of disk space
● More features than other file systems

Why ZFS?
● Designed with systems administrators in mind
● Changes approach to data storage
● Works well in bare metal and virtual environments
● Built in ability to share storage via almost any method

available under Linux – eg. NFS, SMB, iSCSI ...

“Traditional” Filesystem Layout

How ZFS Architecture is Different
● Copy on Write (CoW)
● Abstracts storage from disks
● Has internal measures that replace traditional Linux file

system access
● Uses pools of virtual devices (VDEV’s) which can be of

different size and underlying implementation
● Data is stored in datasets, these are similar

 to LVM logical volumes but far more
configurable

ZFS Approach

VDEVS
● VDEVS are “Virtual Devices”
● The can have different geometries

– Single disk
– Mirror of 2 or more disks
– Multiple types of RAID

● VDEVS are pooled together to create usable
storage space

● Writes are striped across VDEVS
● Losing a VDEV means losing data

Pools
● Made up of one or more vdevs
● Writes spread over vdevs
● Mountable filesystem in it’s own right
● Many pool level attributes are inherited by

datasets
● Pools can be moved from one machine to

another with minimal hassle
● When creating pools remember some

settings are immutable

Datasets
● Created from ZFS pools
● Each has a set of tuneable attributes

– Some attribute cannot be changed from inherited, or initial
values

● Mountable in arbitrary locations

ZVOLs
● Block devices
● Multiple uses, including swap
● Arbitrary block size
● Not as performant as raw datasets
● Can be exposed to the OS in different ways

ARC/L2ARC/SLOG(ZIL)
● ARC is Adaptive Replacement Cache
● L2ARC is Layer 2 ARC – taken from RAM moved to disk
● SLOG or ZFS Intent Log (ZIL) is an intermediate journal of

disk writes that are yet to happen. It allows for a write
acknowledgment to be sent to applications/OS faster.
ZIL also acts as a kind of journal
preventing data loss between boots.

ZFS Tools
● zpool
● zfs
● zed
● zdb

Creating VDEVs
● Use disk/partition names that will remain constant
● Remember not all disks need to be of the same size
● Not all VDEVs need to be of the same type
● There are 3 vdev types

– Single disk/partition
– Mirror (with no limit on the number of devices)
– RAIDZ (with the option for up to triple

parity)

Snapshots
● Provide a glimpse of the dataset at the time taken
● Can be used to roll back a dataset to the point in time the

snapshot was created
● Mountable
● They do take up space
● The space used is only a delta from the most recent snapshot
● Not automatically deleted, so they need to be managed
● There are existing tools to automatically manage

snapshots
– zsnapd
– zfs-auto-snapshot

● Can be enabled/disabled per dataset

Snapshots for Offsite Backup
● The “zfs” tool provides a send function and a receive

function allowing snapshots to be sent between pools
● The pools do not need to be on the same machine, the

receiver can even be a dataset under another pool

 (e.g. send from <pool>/dataset@<snapshot> to
<pool_2>/dataset/dataset_2)

● Most common transport is via ssh, but any tool
that lets you send and receive data can be
used (mbuffer is another common tool)

Tuneables
● There are almost 230 tuneable parameters for the kernel

module alone
● There are over 75 tuneable parameters for each dataset,

more when you are dealing with enabling non-standard or
new features

Compression and Deduplication
● Native filesystem level compression

– lz4
– lzjb
– gzip
– zle

● Depupication is RAM intensive (1GB of RAM for every 1TB
of deduplicated data space)

● Both can help you squeeze more storage
out of your disk

Optimisation for all ZFS (Kernel)
● Tune the ARC size to fit your needs
● Tune metaslab performance for spreading writes across

vdevs
● Tune ARC/L2ARC performance
● Tune TRIM limits for SSD storage

Easy Tuning for Most Purposes
● Create pools using ashift=12
● Enable lz4 compression
● Set recordsize to 128k
● Disable atime,dev,exec,suid as needed (atime is a big

saver)
● Set logbias to latency
● Set sync to “standard” or “disabled”

Optimisation for MySQL/MariaDB
● This is for innodb only MyISAM is left to people who know

this RDBMS better
● recordsize=16k
● primarycache=metadata
● logbias=throughput

Optimisation for PostgreSQL
● Use separate datasets for data and WAL
● recordsize=8k
● primarycache=metadata
● logbias=throughput

Optimisation for running VM’s
● Controversy over using vdev’s versus qcow2 files
● Different approaches require different optimisation
● VDEV’s should be created with a recordsize that refelcts

the FS that will run on the VM, have logbias=throughput,
and primarycache=metadata and volmode=full

● Using qcow2 files on dedicated datasets is the
recommended way. The datasets should
have a recordsize that matches the FS that
will be used in the VM

Running ZFS in a [hosted] VM
● Use a single disk vdev
● Still use an SLOG device
● Worry more about file compression and RAM usage than

underlying storage.

Resources
● Manpages

– zpool
– zfs
– zdb
– zpool-features
– zfs-module-parameters
– zfs-events

● Online
– OpenZFS wiki http://open-zfs.org/wiki/Main_Page
– Arch Linux wiki https://wiki.archlinux.org/index.php/ZFS
– ZFS on Linux FAQ https://github.com/zfsonlinux/zfs/wiki/FAQ

http://open-zfs.org/wiki/Main_Page
https://wiki.archlinux.org/index.php/ZFS
https://github.com/zfsonlinux/zfs/wiki/FAQ

The End ...

