Configuration is (riskier
than?) Code

Jamie Wilkinson

(@jagx0r)
A Site Reliability Engineer at Google

linux.conf.au Gold Coast 2020

The outline

1. Some observations about configuration change causing massive outages
a. Examples from public outages in last few years
b. There’s many anecdotes of people hating config, too

2. | think the Universal Turing Machine theorem applies to config, too

a. What really is Config then?
b. Config changes the beahviour of programs; this is like how interpreters work, on (usually) a

less powerful language
3. What does the research show?

a. Public research has weak results, small datasets, bad data, inconclusive
b. My research internally on our postmortem database shows no strong evidence for config being

riskier
4. Why isn't it as high as we think?

a. What practices does Google do that is mitigating this theoretical risk?

Observations

June 2016: Google Cloud Networking

https://status.cloud.google.com/incident/compute/16015

Google Compute Engine Incident #16015
Networking issue with Google Compute Engine services

Incident began at 2016-08-05 00:54 and ended at 2016-08-05 02:40 (all times are US/Pacific).

DATE TIME DESCRIPTION

@ Aug09, 2016 07:21 SUMMARY:

On Friday 5 August 2016, some Google Cloud Platform customers experienced increased network latency and packet loss to
Google Compute Englne (GCE), Cloud VPN, Cloud Router and Cloud SQL fora duratlon of 99 minutes. If you were affected by

..a new procedure for diverting traffic from the router was used. This procedure

applled a new conflgurauon that resulted in...”

Some Google Compute Engine TCP and UDP traffic had elevated latency. Most ICMP, ESP, AH and SCTP traffic inbound from
outside the Google network was silently dropped, resulting in existing connections being dropped and new connections timing
out on connect.

Most Google Cloud SQL first generation connections from sources external to Google failed with a connection timeout. Cloud
SQL second generation connections may have seen higher latency but not failure.

https://status.cloud.google.com/incident/compute/16015

Jan 2018: Google Compute Engine

https://status.cloud.google.com/incident/compute/18001

Google Compute Engine Incident #18001
The issue with Google Compute Engine has been resolved for all affected projects as of 20:30 US/Pacific.

Incident began at 2018-01-31 18:20 and ended at 2018-01-31 19:50 (all times are US/Pacific).

DATE TIME DESCRIPTION

& Feb07,2018 10:05 On Wednesday 31 January 2017, some Google Cloud services experienced elevated errors and latency on operations that
required inter-data center network traffic for a duration of 72 minutes. The impact was visible during three windows: between

“...an error in a configuration update to the system that allocates network capacity”

S T

The root cause of this incident was an error in a configuration update to the system that allocates network capacity for traffic
between Google data centers.

To prevent a recurrence, we will improve the automated checks that we run on configuration changes to detect problems before
release. We will be improving the monitoring of the canary to detect problems before global rollout of changes to the
configuration.

https://status.cloud.google.com/incident/compute/18001

May 2018: Google BigQuery

https://status.cloud.gooagle.com/incident/bigquery/18036

Google BigQuery Incident #18036
Multiple failing BigQuery job types

Incident began at 2018-05-16 16:00 and ended at 2018-05-16 18:18 (all times are US/Pacific).

“Configuration changes being rolled out on the evening of the incident were not
applied in the intended order. This resulted in an incomplete configuration change
OnWednesbecoming |ive in Some Zones. i .andqueryjobsforaduratlonofBS

MINUELES OVE! vy wiiie peiiuus (39 1uLes niuaity, anu 5o nnnuces i uie seeuniy, wilich was isolated to the EU). We sincerely
apologize to all of our affected customers; this is not the level of reliability we aim to provide in our products. We will be issuing

During the rollback attempt, another bad configuration change was enqueued for
automatic rollout and when unblocked, proceeded to roll out...”

On wednesday 16 May 2018 frrom 16:00 to 16:55 and from to 1/:45 to 18:18 PD 1, Google BigQuery experienced a fallure of
some import, export and query jobs. During the first period of impact, there was a 15.26% job failure rate; during the second,
which was isolated to the EU, there was a 2.23% error rate. Affected jobs would have failed with INTERNAL_ERROR as the
reason.

https://status.cloud.google.com/incident/bigquery/18036

Aug 2018: Google Cloud Networking

https://status.cloud.gooagle.com/incident/cloud-networking/18013

Google Cloud Networking Incident #18013
We are investigating issues with Internet access for VMs in the europe-west4 region.

Incident began at 2018-07-27 18:27 and ended at 2018-07-27 19:31 (all times are US/Pacific).

DATE TIME DESCRIPTION

& Augo07,2018 14:51 ISSUE SUMMARY

On Friday 27 July 2018, for a duration of 1 hour 4 minutes, Google Compute Engine (GCE) instances and Cloud VPN tunnels in
europe-west4 experienced loss of connectivity to the Internet. The incident affected all new or recently live migrated GCE
instances. VPN tunnels created during the incident were also impacted. We apologize to our customers whose services or

“...caused by an unintended side effect of a configuration change made to jobs

UCIAILCU VDOLRIT TIVIN U 1IivirALC]

that are critical in coordinating the availability...” o1 ror o

connectivity to the Internet and other instances via their public IP addresses. Additionally any instances that live migrated during
the outage period would have lost connectivity for approximately 30 minutes after the live migration completed. All Cloud VPN
tunnels created during the impact period, and less than 1% of existing tunnels in europe-west4 also lost external connectivity. All
other instances and VPN tunnels continued to serve traffic. Inter-instance traffic via private IP addresses remained unaffected.

ROOT CAUSE

Google's datacenters utilize software load balancers known as Maglevs [1] to efficiently load balance network traffic [2] across

' . - o . o r - - ' . < v e e w1

https://status.cloud.google.com/incident/cloud-networking/18013

Nov 2018: Amazon EC2

https://aws.amazon.com/messaqge/74876/

Summary of the Amazon EC2 DNS Resolution Issues in the Asia Pacific (Seoul) Region (AP-NORTHEAST-2)

=02 g7

We'd like to give you some additional information about the service disruption that occurred in the Seoul (AP-NORTHEAST-2) Region on November 22, 2018. Between 8:19 AM and 9:43
AM KST, EC2 instances experienced DNS resolution issues in the AP-NORTHEAST-2 region. This was caused by a reduction in the number of healthy hosts that were part of the EC2 DNS
resolver fleet, which provides a recursive DNS service to EC2 instances. Service was restored when the number of healthv hosts was restored to previous levels. EC2 network connectivity

andons resoution autsfi T @ root cause of DNS issues was a configuration update...”

The root cause of DNS resolution issues was a configuration update which incorrectly removed the setting that specifies the minimum healthy hosts for the EC2 DNS resolver fleet in the
AP-NORTHEAST-2 Region. This resulted in the minimum healthy hosts configuration setting being interpreted as a very low default value that resulted in fewer in-service healthy hosts.
With the reduced healthy host capacity for the EC2 DNS resolver fleet, DNS queries from within EC2 instances began to fail. At 8:21 AM KST, the engineering team was alerted to the DNS
resolution issue within the AP-NORTHEAST-2 Region and immediately began working on resolution. We identified root cause at 8:48 AM KST and we first ensured that there was no
further impact by preventing additional healthy hosts from being removed from service; this took an additional 15 minutes. We then started restoring capacity to previous levels which
took the bulk of the recovery time. At 9:43 AM KST, DNS queries from within EC2 instances saw full recovery.

https://aws.amazon.com/message/74876/

March 2019: Google Cloud Storage

https://status.cloud.google.com/incident/storage/19002

Google Cloud Storage Incident #19002

Elevated error rate with Google Cloud Storage.

Incident began at 2019-03-12 18:40 and ended at 2019-03-12 22:50 (all times are US/Pacific).

DATE TIME DESCRIPTION

.a configuration change WhICh had a side effect of overloading a key part of the

B B

and 10 minutes. We apologlze to custcsyste m ’%: or application was impacted by this incident. We know that our

customers depend on Google Cloud Pl
prevent outages of this type from recurring.

DETAILED DESCRIPTION OF IMPACT

* | we are taking immediate steps to improve our availability and

On Tuesday 12 March 2019 from 18:40 to 22:50 PDT, Google's internal blob (large data object) storage service experienced
elevated error rates, averaging 20% error rates with a short peak of 31% errors during the incident. User-visible Google services
including Gmail, Photos, and Google Drive, which make use of the blob storage service also saw elevated error rates, although
(as was the case with GCS) the user impact was greatly reduced by caching and redundancy built into those services. There will
be a separate incident report for non-GCP services affected by this incident.

https://status.cloud.google.com/incident/storage/19002

June 2019: Google Cloud

https://cloud.google.com/blog/topics/inside-google-cloud/an-update-on-sundays-service-disruption

INSIDE GOOGLE CLOUD

An update on Sunday’s service disruption

Benjamin Treynor Sloss Yesterday, a disruption in Google’s network in parts of the United States caused slow
VB 24x7 performance and elevated error rates on several Google services, including Google Cloud
Platform, YouTube, Gmail, Google Drive and others. Because the disruption reduced
regional network capacity, the worldwide user impact varied widely. For most Google
users there was little or no visible change to their services—search queries might have
been a fraction of a second slower than usual for a few minutes but soon returned to

normal, their Gmail continued to operate without a hiccup, and so on. However, for users

“In essence, the root cause of Sunday’s disruption was a conflguratlon change
that was intended for a small number of servers in the region.”

make Google's services available to everyone around the world, and when we fall short of
that goal—as we did yesterday—we take it very seriously. The rest of this document
explains briefly what happened, and what we're going to do about it.

Incident, D ion and R

In essence, the root cause of Sunday’s disruption was a configuration change that was
intended for a small number of servers in a single region. The configuration was
incorrectly applied to a larger number of servers across several neighboring regions, and

it caneed thnse reainns tn atan 1isina mare than half of thair availahle netwnrk canacitv

https://cloud.google.com/blog/topics/inside-google-cloud/an-update-on-sundays-service-disruption

July 2019: CloudFlare

https://blog.cloudflare.com/cloudflare-outage/

Cloudflare outage caused by
bad software deploy
(updated)

“The cause of the outage was deployment of a single misconfigured rule within the
Cloudflare Web Application Firewall (WAF) during a routine deployment...”

3 July 2019, 01:50 am

and-disclosure-ebwhat happened-oday.

For about 30 minutes today, visitors to Cloudflare sites received 502 errors
caused by a massive spike in CPU utilization on our network. This CPU
spike was caused by a bad software deploy that was rolled back. Once
rolled back the service returned to normal operation and all domains using
Cloudflare returned to normal traffic levels.

https://blog.cloudflare.com/cloudflare-outage/

The vox populi

Y Kelly Sommers AT A .
& @kellabyte

“The massive outage was a result of a server
configuration change” seems to be 90% of
the massive outage descriptions. There’s
either a lot to learn from that lesson or people
are hiding a lot under “server configuration
change”

1:26 PM - 14 Mar 2019

98 Retweets 401likes 8 8 S S @ @ 6 *3

https://twitter.com/kellabyte/status/1106290558618619904

https://twitter.com/kellabyte/status/1106290558618619904

’if Jez Humble @&

5. @jezhumble

FrN

| mean, you’re much more likely to
catastrophically out your prod system
with a config change than with a code
change, so if you're not already checking
them into version control and running
them through a deployment pipeline, put
down whatever you're doing right now...

Kelly Sommers @kellabyte

“The massive outage was a result of a server configuration change” seems
to be 90% of the massive outage descriptions. There's either a lot to learn
from that lesson or people are hiding a lot under “server configuration
change”

1:43 PM - 14 Mar 2019

304 Retweets 619 Likes ‘ 6 e ‘;‘ ’ g 0 . > 4

https://twitter.com/jezhumble/status/1106294766587641856

https://twitter.com/jezhumble/status/1106294766587641856

=« Kent Beck @
QS @KentBeck
Replying to @jezhumble
A ways into my time at Facebook | realized
that the whole thing was programmed in
config files and feature flag settings and
everyone else was writing a gigantic
interpreter for this strange language.

1:54 PM - 14 Mar 2019
72 Retweets 282 Likes 6 e] Q @ @ 0 o ’

https://twitter.com/KentBeck/status/1106297538104061952

(Follow | v

https://twitter.com/KentBeck/status/1106297538104061952

Matt Weag| F—
@ @:weaggage (i) v
Related: “It's just a config change.”

Deepak Singh @mndoci
OH: “it’s a trivial change". Famous last words

11:59 AM - 20 May 2019

2 Retweets 17 Likes @ < s}:, ‘a ‘ % ‘ e e

https://twitter.com/mweadgle/status/1130548712596430848

https://twitter.com/mweagle/status/1130548712596430848

Configuration {as,is} code

(more thoughtleadership)

Rich Burroughs P e % g
@richburroughs Ny /

Just heard the phrase “coding in YAML" used
unironically.

12:39 AM - 22 Dec 2018

2 Retweets 24 Likes @ ‘ 6 @ ’ ‘ \;n 0 ,e

https://twitter.com/richburroughs/status/1076396782190391297

https://twitter.com/richburroughs/status/1076396782190391297

. Jamie Wilkinson @jaqx0Or - 22 Dec 2018
Replying to @richburroughs
Where's the lie?

QO 1 1) 2

& Rich Burroughs @richburroughs - 22 Dec 2018
@ Jamie.

QO 1 (aR}) 1

https://twitter.com/jagxOr/status/1076402245489446913

https://twitter.com/jaqx0r/status/1076402245489446913

:‘ Jamie Wilkinson -
@jaqgxOr

Replying to

Does the yaml tell a computer to do things?)
1:36 AM - 22 Dec 2018

2 Likes @ ‘

https://twitter.com/jagxOr/status/1076411213813149696

https://twitter.com/jaqx0r/status/1076411213813149696

What |S e Input parameters extracted

from the program

CO nfl g U rat| on ? e Distributed separately, faster,

and more frequently than code
e A useful abstraction that hides

details

Where does config come from?

Command line options

Files representing a data structure
Environment variables

User input: fields in the APl request
Administrative APIs, commands, and schemas

Example: Environment settings

period = os.getenv(“TRACE_PERIOD”, ©0) $ export TRACE_PERIOD=1000

if period > 0O: $./prog --database="user:pass@dbhost”
trace.SetTracePeriod(period)

if FLAGS.database == “:
log.Fatal(“no --database™)

InitDB(FLAGS database)

Example: Feature flags

$./prog --enable_ feature $./prog --new_backend
if (FLAG enable feature) { if (FLAG new _backend) {
CallSomeFeatureMethod(); NewSchemaOrMicroservice();
} } else {
DoItTheOldWay();

Example: Thresholds

$./prog --max_connections=1000

func handleConnection(...) {

if connCount > FLAG max_connections {

return 429;

Inputs to a program

Given a program P

Let us describe our program with the function P(x) -> y

For some user input x it generates y. This is why you made it in the first place.

and a configuration C

We want the output of the program to be changed based on some administratively
controlled input. This new input is called the configuration:

P(C, x) —y

For a given configuration C, our program still turns an input x into an output y.

and a configuration C

We want the output of the program to be changed based on some administratively
controlled input. This new input is called the configuration:

P(C, x) >y
For a given configuration C, our program still turns an input x into an output y.
Some users might not be able to change C, they see a program Q:

Q(x) — P(C, x) > y

We can change the behaviour

without changing the program
Given a different configuration C’
P(C’, x) -y

our output is now y’

This is not just theoretical

$./prog --enable feature C = <enable_feature: true >

if (FLAG enable feature) { P(C, x) — y implies FeatureMethod()
FeatureMethod();

} C’= < enable feature: false >

P(C’, x) — y’implies no FeatureMethod()

C can represent a complex structure

C=x< C=<0O,E,F S>

enable_feature € { true, false} where

trace period € ¥ O = < command line flags and options >,
address € [A-Z]* E = < environment variables >,

> F = <files >,

S = < state and schemas >

We can be even more pedantic, too

P(C<O, E, F S>, I<A, x>) —» y
where P and C are our previously defined function and configuration,
x is now joined with
A = user-provided API request configuration

in /, the whole user input to the program.

What else looks like this?

while lterminate { Simulators, virtual machines, interpreters take a
configuration input (the program) and another
instr := fetch(pc) input (the input to the program), and emit an
output that changes with both the config and the

switch instr { input

case nop. This is the Universal Turing Machine theorem
break P(C, x,, ... X)) >y
case Jmp:. DHP, C, x,, ... x) >y

pc = operand()

b

“That's not what Post-Turing says...

Turing Equivalent languages

Type O: recursively enumerable

T 1: context sensitive
yPe (Most) Config Languages

Type 2: context free

Type 3: regular
We can move to

strictly less powerful
languages, but not
back again.

With the right program, you can code in YAML

op: add
left: 3
right:
op: add
left: 1

right: 2

The config language may not be Turing-complete,
thus the program is not Turing-equivalent: that
means you can’t perform any computation'.

... but you can perform arbitrary computation within
the range of the function P

*unless you’re in infosec

Alternatively

Less powerful languages are still very useful, because their reduction in strength
means we have more properties we can rely on

Your program Is an
Interpreter.

(For a, perhaps, not very
general language)

Configuration is code

(Not very powerful code,
but code nonetheless)

S scawwy ewwiza
E8Y @mycoliza

who called it "infrastructure as code" and not
"software-defined software"

8:27 AM - 10 Apr 2019 from Oakland

7 Retweets 32 Likes ‘ g "e) ‘ (3 0 ‘

https://twitter.com/mycoliza/status/1115999705190649856

https://twitter.com/mycoliza/status/1115999705190649856

Follow v

A Brandon Hays o .
. @tehviking >

what idiot called it "YAML Parser Error"
and not "A Series of Unfortunate
Indents"

6:05 PM - 16 Apr 2018 from Austin, TX

1,081 Retweets 3,799Likes @@ L QO ~ & &

https://twitter.com/tehviking/status/986048060487806976

https://twitter.com/tehviking/status/986048060487806976

Justin Palmer ”
N @Caged

Writing YAML

11:01 AM - 12 Sep 2018

3,526 Retweets 9916Likes @@ B 0 S Q@D E

https://twitter.com/Caged/status/1039937162769096704/photo/1

https://twitter.com/Caged/status/1039937162769096704/photo/1

Dave Ch
'15(1\\ @3Z\zchenz;|ey V
Configuration as code is great and all, but
has anyone tried to write a unit test for yaml?
#Kuberneteslife

4:39 PM - 17 Sep 2019

36 Retweets 263 Likes * ‘ é @ o g @Q s

Q a0 1 36 QO 263

https://twitter.com/davecheney/status/1174105604 182269952

https://twitter.com/davecheney/status/1174105604182269952

Caitie McCaffrey
s , Follow)
@caitie <

Replying to @kellabyte

| think one of the big challenges with config
changes is they are difficult to test. Usually
config changes are environment specific, so
even if you have a CI/CD pipeline the prod
config change only really gets tested in prod.

4:29 PM - 14 Mar 2019

16 Retweets 103 Likes g i :Q ao ® A eo

https://twitter.com/caitie/status/1106336594594680833

https://twitter.com/caitie/status/1106336594594680833

Jessica Joy Kerr
: @jessitron

Replying to and 3 others

It's programming, except you can’t test it
nearly as easy, or even check its syntax.
Pretty scary.

Config should be data, different from on env
to env. Other than that let’s use code that is
modular and testable please

That isn’t the world we live in ... yet

6:31 AM - 10 Apr 2019

e QOIDE B

https://twitter.com/jessitron/status/1115970585631371264

https://twitter.com/jessitron/status/1115970585631371264

W @arrdem

co-workers, sobbing: you can't just point
at anything with a syntax tree and call it
a lisp

me, pointing at a mountain of yaml:
really shitty lisp

1:01 PM - 28 Oct 2019
23 Retweets 153 Likes o . \3 V e ‘ a u' @
Q 4 0 23 O 153

https://twitter.com/arrdem/status/1188908619435139072

https://twitter.com/arrdem/status/1188908619435139072

James "pentagrames scarernbull” Turnbull @ @kartar - Jan 4 v

@ If only we had knowledge about some kind of Domain Specific Languages for
configuration that would help us replace YAML and JSON...

Q 22 1 s O a3

Nathan L Smith @nlsmith - Jan 4 v
';' s-expressions
Q 1 () Q 2

Adam Jacob P 2
@ @adamhik il B

Replying to @nlsmith @kartar

Dude, not even kidding. All this shit should’ve
been Lisp.

12:41 PM - 4 Jan 2019

wikes PHOO DL EO

https://twitter.com/adamhijk/status/1081289520903942144

https://twitter.com/adamhjk/status/1081289520903942144

(This is what the GNU Scheme people
have been saying for decades)

“Any sufficiently complicated C or
Fortran program contains an ad hoc,
informally-specified, bug-ridden,
slow implementation of half of
Common Lisp."

— Philip Greenspun's tenth rule of programming

Config programs evaluate to return parameters

((enable_ feature t)

(trace_period (cond (eq env “prod”)
1000 1))

(address (concat “user:pass”
(cond (eq env “prod”)
“dbhost”

“testdbhost™))

config <
enable_feature: true
trace_period: 1000

address: “user:pass@dbhost”

(Should it have been LISP?)

Within Google there are:

e 110 “named” languages (including no-longer-used languages)
e /06 of these are “ordinary” (unspecialised), including JSON and Pythonic

derivatives
o Python is particularly juicy as a tool for expressing DSLs that trick you into thinking they’re

Python. Rubyists might relate to this.
e Additionally there are
o 72 more Yacc grammars
o 466 ANTLR grammars

o 92 lex programs, and
o ~6000 occurrences of EBNF specifications

e None of these count command line flags that accept structured values
o (e.g.text format protobufs)

The Configuration Complexity Clock

http://mikehadlow.blogspot.com/2012/05/confiquration-complexity-clock.htmi

When I was a young coder, just starting out in the big scary world of enterprise software, an older, far more experienced chap gave me a stern warning about hard coding values in
some point, and you don’t want to recompile and redeploy your application just to change the VAT tax rate.” I took this advice to heart and soon every value that my application ne
still think it’s good advice, but be warned, like most things in software, it's good advice up to a point. Beyond that point lies pain.

Let me introduce you to my ‘Configuration Complexity Clock’.

Hard Coded

DSL Config Values

Rules Engine

This clock tells a story. We start at midnight, 12 o'clock, with a simple new requirement which we quickly code up as a little application. It’s not expected to last very long, just a sta
we've hard-coded all the application’s values. Months pass, the application becomes widely used, but there's a problem, some of the business values change, so we find ourselves re
change a few numbers. This is obviously wrong. The solution is simple, we'll move those values out into a configuration file, maybe some appsettings in our App.config. Now we're

http://mikehadlow.blogspot.com/2012/05/configuration-complexity-clock.html

Clock progression is increasing language power

Type O: recursively enumerable

Type 1: context sensitive

Type 2: context free

Type 3: regular
We can move to more

powerful langauges by
creating constructs to
express ourselves
better.

The Configuration Complexity Spiral

DSL

Boomer

Gen X

-~ You must be this old to get this joke.

GenY

Millennial

Oh sendmail.cf is also Turing complete.

Observation
P(C, x) -y

Every configurable program has two users: the end user, and the administrator

“... but you can perform arbitrary
computation within the range of the
function P”

What's the domain of P?

How many configuration options do you have?

P(C, x) -y
The number of options in C:
C]

How many values can they each take?

n

[11Cx]

=1

https://pixabay.com/photos/shuttle-cockpit-space-rocket-642404/

A thesis:

Configuration:
e s like code
e s harder to test before production, because environment
e has larger force multipliers, thus larger impact per character, because of
abstractions and automation
e s empirically the “cause” of several large publicly visible Cloud Outages
therefore Configuration:
1. will be a key factor in a majority of change related outages, and
2. as a key factor will correlate with higher severity outages

previous work

https://davidmytton.blog/what-are-the-common-causes-of-cloud-outages/ Not very
conclusive; slight favour for config

https://people.cs.uchicago.edu/~shanlu/paper/hotos19_azure.pdf LUS€S different terminology, software bug
causes, so the opposite side

Trends from Trenches: doesn’t break down cause by kind
SRE Book: 70% cause by change, not broken down by kind

Why does the cloud stop computing: problematic

https://davidmytton.blog/what-are-the-common-causes-of-cloud-outages/
https://people.cs.uchicago.edu/~shanlu/paper/hotos19_azure.pdf

Why Does the Cloud Stop Computing?

SoCC ’16, October 05 - 07, 2016, Santa Clara, CA, USA
597 public outages from 2009 to 2015

“Config” ranked 5th, 10% of “root causes”. 3rd when limiting to “change’-like
causes only.

Only classified an outage with a cause if the text contained the correct words.
Only classified each outage with a singular root cause.

What bugs cause production cloud incidents?

HotOS ’19, May 13—-15, 2019, Bertinoro, Italy
Microsoft Azure based study.
Entirely different language for classifying cause.

That’s because it's focussing on software defects, not change events.

The SRE Book

O’Reilly Media, 2016.

“SRE has found that roughly 70% of outages are due to changes in a live system.”

... and that's it.

Incidents - Trends from the Trenches

https://m.subbu.org/incidents-trends-from-the-trenches-e2f8497d52ed

Feb 2019
Classifies based on “trigger”, the event that surfaced the outage.
A “large number” of outages covered.

Change is identified as a trigger in 1/3rd outages; and “software deployments” half
of that.

“Config drift” is identified as trigger in 1/5th of outages, in which changes should
have been applied to config, but have not.

https://m.subbu.org/incidents-trends-from-the-trenches-e2f8497d52ed

What are the common causes of Cloud Outages?

https://davidmytton.blog/what-are-the-common-causes-of-cloud-outages/,

Jul 2019
49 public outage reports from 2016 to 2019.
16 attributed to “misconfiguration” (32%), 21 to bugs (43%)

4 to “human error”

https://davidmytton.blog/what-are-the-common-causes-of-cloud-outages/

A List Of Postmortems!

https://qithub.com/danluu/post-mortems#config-errors

Community maintained list of postmortems, ~100 listed.

Configuration (21) ranked second after Uncategorized, no mention of software
bugs.

https://github.com/danluu/post-mortems#config-errors

My own research

Manually count SRE Weekly
Newsletter from
https://sreweekly.com/

Got bored, terrible data; mostly
noise, about 1% of articles had
useful information in it.

1 fw Mﬁ#mrmw/ |
Ry Ae,l.L,1 —ﬁ/ﬁ% {//] ,,,_‘7: f i
3 _;f* - QT%TZ . .
T Caher T 1 [' |

' NoholﬂoowkuJ _W%%W %WW

1 v \
Neboeic /]

e

| Chegclhyle, T

 lonkiqs M Pep |
R4

8 %:\c %W ’9 \“JYW,' |92
-A;u\ﬁwu;,o (8" {f evolev \6Y

Wﬁ i .

https://sreweekly.com/

My own research, cont

Explore the Google postmortems dataset. Many thousands of reports of all
severities dating back many years.

Multiple-choice classification of causes and triggers by author at creation time.
Can manually keyword match against data.

Measured config push, binary push, both, and neither.

Config and Binary are equal in size; config is slightly higher than binary (by 2%) in
when comparing only “big” severity outages.

Year over year, config was slightly higher up until 2018 when the pattern reversed,
and in 2019 equal.

Results

Insufficient data from public studies to draw a strong conclusion.

Sufficient data from internal study to conclude that, internally, config and code are
equally risky. This is actually somewhat reassuring because it is not in conflict
with the theory that config is code.

Unsatisfying, possibly insignificant result that config is slightly more likely to be a
cause in large outages than code. But looks like it was higher in the past.

So the theory is incorrect, or is Google an outlier and manages that risk well?

Risk Mitigations

There’s always low hanging fruit

Simple Testing Can Prevent Most Critical Failures (OSDI 2014) shows that simple
testing can eliminate 1/5th outages in systems observed, lesson is there's always
low hanging fruit.

If config is code, and config changes are equally likely to cause an outage as code
changes are, then config testing should be part of the CI/CD.

1. Simple parse test
2. Validation test (using same code as main program)

Config that is a program can perform assertions; all those less powerful languages
need you to write the test program.

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

Put everything in version control

Everything, even “running a command against an APl endpoint” (e.g. schema
changes).

Make a script if necessary. Try to avoid “human runs a maintenance command
from their workstation.”

Code review and audit logs address time to resolve incidents by having
information about change more visible.

Recall the two users of any system

e Help the administrators make good decisions.

e The sooner a config is validated after commit, the better
o Validation that happens only during deploy is better than nothing, but slow feedback loops lead
to unhappy people
o Factor out validation into small binaries to run during code review

e Configs that are the result of generators can show diffs against the last

version in code review
o Showing the author and reviewer the closest thing to “how the bare metal will change”
improves understanding
o Corollary: Config generators need investment in error reporting to aide the humans, rather
than confuse them

e Automatic config formatting just like code formatters
o Removes cognitive burdens when reviewing change

Staging/Pre-production environments

End to end functional testing of behaviours before users also see them.
Verifying config changes do not break those behaviours just as you do for code.
Useful especially if parts of configuration are in the user request.

Can never be equivalent to production.

Staging environments

3 6

Distributed systems have an infinitely long list of
that make staging
environments particularly worthless.

this is a black hole for engineering time

https://speakerdeck.com/charity/engineering-large-systems-when-youre-not-google-or-facebook-test-in-prod?slide=12

https://speakerdeck.com/charity/engineering-large-systems-when-youre-not-google-or-facebook-test-in-prod?slide=12

Property-based Testing and Fuzzing

Recall our state space is the Cartesian product of the dimensions of our config C

with a possibly large but finite number of values.
n

[11C|

i=1
Fuzz is a useful exploratory tool when the state space of the input is intractably
large to brute force, and also fun.

Fuzzers don’t test behaviour and don’t know how to make logical tests, and can
take a long time to uncover a bug

Progressive Rollouts

Pre-production testing cannot reach 100% coverage.

The final test for config changes are when it hits production.

The safest way to manage that risk is progressive rollouts.

Bonus points for using automated analysis and stopping/rolling back if necessary.

Requires careful engineering of the system as well as the rollout system, and
reqular drilling on fast rollbacks

Progressive Rollouts and Split Brains

Progressive Rollouts and Split Brains

Progressive Rollouts of Config and the Split Brain

Some global systems pass messages between zones about their state, and make
assumptions about those peers state.

During a config rollout, a peer might detect another is misbehaving or broken
when it is really a change of parameters not visible yet to that peer.

One method to address this is to share local decision outputs as well as inputs in
messages so the peers can crosscheck the work.

Delete code to simplify config

Simplicity is hard work, but things to look for:

e obsolete config flags never set, or set to defaults. Delete the condition and

the path never taken.
o Automate it! (ClangMR, go fix, etc)

e Machine-discoverable information. Instead of passing task counts in a config,
and needing to keep that synchronised, let the program query for task counts.

Opportunity allows for autoscaling.
o Example: GCS backend

e Stop Config Spirals, remove scaffolding, layers of abstraction (hark back to
aiding understanding)

Change the power of your config language

e Low power languages are less likely to have unexpected side effects inside

their own scope.
o Power reduction allows automation to make more assumptions and optimisations about intent.
o Requires more options to capture the nuance of user intent.
o Language modification is a small barrier to change

e High power languages are more likely to be able to describe the user’s intent

correctly.
o Power increase reduces ability for machines to understand intent
o Requires less work on part of implementer to capture all possible meanings and allows users
to adapt to change.
o Use an existing popular languages improves operator understanding

e Both directions lead to outages!

Other mitigations (TODO EXPAND)

progressive rollouts of config, testing in prod, canary analysis

pre-submit validation using same code as production in smaller binaries
code formatters, and generated config differs

fuzzing. earlier observation that config is a large state space; we can explore
with fuzzers.

actual functional testing, that’'s what staging environments are for

continuous integration of configs as well as code.

deleting of config paths when no longer used; clang-mr; reference the
Mythical Man Month on “simplicity”, but advice on what to look for (ala
blobstore config)

mitigations for split brain when doing progressive rollouts (ala autopilot global
config)

Configuration is Code, treat it so

1. In theory, configuration should be a high risk of outage
2. Experimentally, not enough data to make strong conclusion
3. Risk mitigations that treat config the same as code work very well

a.

Q@ -0 Q0 T

Everything in version control and no out-of-band maintenance
Continuous testing and high coverage

Fast feedback

Contextful error messages

Safe rollout practices and fast rollbacks

Delete everything you don’t need

Automate it

References!

You can find links to the external
references by visiting the URL
encoded in this QR Code.

Also please rate this session on the
O’Reilly website or mobile app by
clicking the big yellow button on the
session page.

