
Configuration is (riskier
than?) Code

Jamie Wilkinson
(@jaqx0r)

A Site Reliability Engineer at Google

linux.conf.au Gold Coast 2020

The outline
1. Some observations about configuration change causing massive outages

a. Examples from public outages in last few years
b. There’s many anecdotes of people hating config, too

2. I think the Universal Turing Machine theorem applies to config, too
a. What really is Config then?
b. Config changes the beahviour of programs; this is like how interpreters work, on (usually) a

less powerful language

3. What does the research show?
a. Public research has weak results, small datasets, bad data, inconclusive
b. My research internally on our postmortem database shows no strong evidence for config being

riskier

4. Why isn’t it as high as we think?
a. What practices does Google do that is mitigating this theoretical risk?

Observations

June 2016: Google Cloud Networking
https://status.cloud.google.com/incident/compute/16015

“...a new procedure for diverting traffic from the router was used. This procedure
applied a new configuration that resulted in…”

https://status.cloud.google.com/incident/compute/16015

Jan 2018: Google Compute Engine
https://status.cloud.google.com/incident/compute/18001

“...an error in a configuration update to the system that allocates network capacity”

https://status.cloud.google.com/incident/compute/18001

May 2018: Google BigQuery
https://status.cloud.google.com/incident/bigquery/18036

“Configuration changes being rolled out on the evening of the incident were not
applied in the intended order. This resulted in an incomplete configuration change

becoming live in some zones…

During the rollback attempt, another bad configuration change was enqueued for
automatic rollout and when unblocked, proceeded to roll out…”

https://status.cloud.google.com/incident/bigquery/18036

Aug 2018: Google Cloud Networking
https://status.cloud.google.com/incident/cloud-networking/18013

“...caused by an unintended side effect of a configuration change made to jobs
that are critical in coordinating the availability...”

https://status.cloud.google.com/incident/cloud-networking/18013

https://aws.amazon.com/message/74876/

“The root cause of DNS issues was a configuration update…”

Nov 2018: Amazon EC2

https://aws.amazon.com/message/74876/

March 2019: Google Cloud Storage
 https://status.cloud.google.com/incident/storage/19002

“...a configuration change which had a side effect of overloading a key part of the
system.”

https://status.cloud.google.com/incident/storage/19002

https://cloud.google.com/blog/topics/inside-google-cloud/an-update-on-sundays-service-disruption

“In essence, the root cause of Sunday’s disruption was a configuration change
that was intended for a small number of servers in the region.”

June 2019: Google Cloud

https://cloud.google.com/blog/topics/inside-google-cloud/an-update-on-sundays-service-disruption

July 2019: CloudFlare
https://blog.cloudflare.com/cloudflare-outage/

“The cause of the outage was deployment of a single misconfigured rule within the
Cloudflare Web Application Firewall (WAF) during a routine deployment...”

https://blog.cloudflare.com/cloudflare-outage/

The vox populi

https://twitter.com/kellabyte/status/1106290558618619904

https://twitter.com/kellabyte/status/1106290558618619904

https://twitter.com/jezhumble/status/1106294766587641856

https://twitter.com/jezhumble/status/1106294766587641856

https://twitter.com/KentBeck/status/1106297538104061952

https://twitter.com/KentBeck/status/1106297538104061952

https://twitter.com/mweagle/status/1130548712596430848

https://twitter.com/mweagle/status/1130548712596430848

Configuration {as,is} code

(more thoughtleadership)

https://twitter.com/richburroughs/status/1076396782190391297

https://twitter.com/richburroughs/status/1076396782190391297

https://twitter.com/jaqx0r/status/1076402245489446913

https://twitter.com/jaqx0r/status/1076402245489446913

https://twitter.com/jaqx0r/status/1076411213813149696

https://twitter.com/jaqx0r/status/1076411213813149696

What is
configuration?

● Input parameters extracted
from the program

● Distributed separately, faster,
and more frequently than code

● A useful abstraction that hides
details

Where does config come from?
● Command line options
● Files representing a data structure
● Environment variables
● User input: fields in the API request
● Administrative APIs, commands, and schemas

Example: Environment settings
period = os.getenv(“TRACE_PERIOD”, 0)

if period > 0:

 trace.SetTracePeriod(period)

if FLAGS.database == “”:

 log.Fatal(“no --database”)

InitDB(FLAGS_database)

$ export TRACE_PERIOD=1000

$./prog --database=”user:pass@dbhost”

Example: Feature flags
$./prog --enable_feature

if (FLAG_enable_feature) {

 CallSomeFeatureMethod();

}

$./prog --new_backend

if (FLAG_new_backend) {

 NewSchemaOrMicroservice();

} else {

 DoItTheOldWay();

}

Example: Thresholds
$./prog --max_connections=1000

…

func handleConnection(...) {

 if connCount > FLAG_max_connections {

 return 429;

 }

...

}

Inputs to a program

Given a program P
Let us describe our program with the function P(x) -> y

For some user input x it generates y. This is why you made it in the first place.

and a configuration C
We want the output of the program to be changed based on some administratively
controlled input. This new input is called the configuration:

P(C, x) → y

For a given configuration C, our program still turns an input x into an output y.

and a configuration C
We want the output of the program to be changed based on some administratively
controlled input. This new input is called the configuration:

P(C, x) → y

For a given configuration C, our program still turns an input x into an output y.

Some users might not be able to change C, they see a program Q:

Q(x) → P(C, x) → y

We can change the behaviour
without changing the program

Given a different configuration C’

P(C’, x) → y’

our output is now y’

This is not just theoretical
$./prog --enable_feature

if (FLAG_enable_feature) {

 FeatureMethod();

}

C = < enable_feature: true >

P(C, x) → y implies FeatureMethod()

C’ = < enable_feature: false >

P(C’, x) → y’ implies no FeatureMethod()

C can represent a complex structure
C = <

 enable_feature ∈ { true, false}

 trace_period ∈ ℕ

 address ∈ [A-Z]*

>

C = <O, E, F, S>

where

O = < command line flags and options >,

E = < environment variables >,

F = < files >,

S = < state and schemas >

We can be even more pedantic, too
P(C<O, E, F, S>, I<A, x>) → y

where P and C are our previously defined function and configuration,

x is now joined with

A = user-provided API request configuration

in I, the whole user input to the program.

What else looks like this?
while !terminate {

 instr := fetch(pc)

 switch instr {

 case nop:

 break

 case jmp:

 pc = operand()

...

Simulators, virtual machines, interpreters take a
configuration input (the program) and another
input (the input to the program), and emit an
output that changes with both the config and the
input.

This is the Universal Turing Machine theorem

P(C, x1, ..., xn) → y

𝚽(#P, C, x1, …, xn) → y

“That’s not what Post-Turing says…”

Type 0: recursively enumerable

Type 1: context sensitive

Type 2: context free

Type 3: regular
We can move to
strictly less powerful
languages, but not
back again.

Turing Equivalent languages

(Most) Config Languages

With the right program, you can code in YAML
op: add

 left: 3

 right:

 op: add

 left: 1

 right: 2

The config language may not be Turing-complete,
thus the program is not Turing-equivalent: that
means you can’t perform any computation*.

… but you can perform arbitrary computation within
the range of the function P
*unless you’re in infosec

Alternatively
Less powerful languages are still very useful, because their reduction in strength
means we have more properties we can rely on

Your program is an
interpreter.

(For a, perhaps, not very
general language)

Configuration is code

(Not very powerful code,
but code nonetheless)

https://twitter.com/mycoliza/status/1115999705190649856

https://twitter.com/mycoliza/status/1115999705190649856

https://twitter.com/tehviking/status/986048060487806976

https://twitter.com/tehviking/status/986048060487806976

https://twitter.com/Caged/status/1039937162769096704/photo/1

https://twitter.com/Caged/status/1039937162769096704/photo/1

https://twitter.com/davecheney/status/1174105604182269952

https://twitter.com/davecheney/status/1174105604182269952

https://twitter.com/caitie/status/1106336594594680833

https://twitter.com/caitie/status/1106336594594680833

https://twitter.com/jessitron/status/1115970585631371264

https://twitter.com/jessitron/status/1115970585631371264

https://twitter.com/arrdem/status/1188908619435139072

https://twitter.com/arrdem/status/1188908619435139072

https://twitter.com/adamhjk/status/1081289520903942144

https://twitter.com/adamhjk/status/1081289520903942144

(This is what the GNU Scheme people
have been saying for decades)

“Any sufficiently complicated C or
Fortran program contains an ad hoc,
informally-specified, bug-ridden,
slow implementation of half of
Common Lisp."
— Philip Greenspun's tenth rule of programming

Config programs evaluate to return parameters
((enable_feature t)

 (trace_period (cond (eq env “prod”)

1000 1))

 (address (concat “user:pass”

 (cond (eq env “prod”)

 “dbhost”

 “testdbhost”))

config <

 enable_feature: true

 trace_period: 1000

 address: “user:pass@dbhost”

>

→

(Should it have been LISP?)
Within Google there are:

● 110 “named” languages (including no-longer-used languages)
● 76 of these are “ordinary” (unspecialised), including JSON and Pythonic

derivatives
○ Python is particularly juicy as a tool for expressing DSLs that trick you into thinking they’re

Python. Rubyists might relate to this.

● Additionally there are
○ 72 more Yacc grammars
○ 466 ANTLR grammars
○ 92 lex programs, and
○ ~6000 occurrences of EBNF specifications

● None of these count command line flags that accept structured values
○ (e.g. text format protobufs)

The Configuration Complexity Clock
http://mikehadlow.blogspot.com/2012/05/configuration-complexity-clock.html

http://mikehadlow.blogspot.com/2012/05/configuration-complexity-clock.html

Clock progression is increasing language power

Type 0: recursively enumerable

Type 1: context sensitive

Type 2: context free

Type 3: regular
We can move to more
powerful langauges by
creating constructs to
express ourselves
better.

The Configuration Complexity Spiral

Puppet
Terraform

Oh sendmail.cf is also Turing complete.

Boomer

Gen X

Gen Y

Millennial

You must be this old to get this joke.

Observation
P(C, x) → y

Every configurable program has two users: the end user, and the administrator

“… but you can perform arbitrary
computation within the range of the
function P”

What’s the domain of P?

How many configuration options do you have?
P(C, x) → y

The number of options in C:

|C|

How many values can they each take?

https://pixabay.com/photos/shuttle-cockpit-space-rocket-642404/

https://pixabay.com/photos/shuttle-cockpit-space-rocket-642404/

A thesis:
Configuration:
● is like code
● is harder to test before production, because environment
● has larger force multipliers, thus larger impact per character, because of

abstractions and automation
● is empirically the “cause” of several large publicly visible Cloud Outages

therefore Configuration:
1. will be a key factor in a majority of change related outages, and
2. as a key factor will correlate with higher severity outages

previous work
https://davidmytton.blog/what-are-the-common-causes-of-cloud-outages/ Not very
conclusive; slight favour for config

https://people.cs.uchicago.edu/~shanlu/paper/hotos19_azure.pdf Uses different terminology, software bug
causes, so the opposite side

Trends from Trenches: doesn’t break down cause by kind

SRE Book: 70% cause by change, not broken down by kind

Why does the cloud stop computing: problematic

https://davidmytton.blog/what-are-the-common-causes-of-cloud-outages/
https://people.cs.uchicago.edu/~shanlu/paper/hotos19_azure.pdf

Why Does the Cloud Stop Computing?
SoCC ’16, October 05 - 07, 2016, Santa Clara, CA, USA

597 public outages from 2009 to 2015

“Config” ranked 5th, 10% of “root causes”. 3rd when limiting to “change”-like
causes only.

Only classified an outage with a cause if the text contained the correct words.
Only classified each outage with a singular root cause.

What bugs cause production cloud incidents?
HotOS ’19, May 13–15, 2019, Bertinoro, Italy

Microsoft Azure based study.

Entirely different language for classifying cause.

That’s because it’s focussing on software defects, not change events.

The SRE Book
O’Reilly Media, 2016.

“SRE has found that roughly 70% of outages are due to changes in a live system.”

… and that’s it.

Incidents - Trends from the Trenches
https://m.subbu.org/incidents-trends-from-the-trenches-e2f8497d52ed

Feb 2019

Classifies based on “trigger”, the event that surfaced the outage.

A “large number” of outages covered.

Change is identified as a trigger in 1/3rd outages; and “software deployments” half
of that.

“Config drift” is identified as trigger in 1/5th of outages, in which changes should
have been applied to config, but have not.

https://m.subbu.org/incidents-trends-from-the-trenches-e2f8497d52ed

What are the common causes of Cloud Outages?
https://davidmytton.blog/what-are-the-common-causes-of-cloud-outages/,

Jul 2019

49 public outage reports from 2016 to 2019.

16 attributed to “misconfiguration” (32%), 21 to bugs (43%)

4 to “human error”

https://davidmytton.blog/what-are-the-common-causes-of-cloud-outages/

A List Of Postmortems!
https://github.com/danluu/post-mortems#config-errors

Community maintained list of postmortems, ~100 listed.

Configuration (21) ranked second after Uncategorized, no mention of software
bugs.

https://github.com/danluu/post-mortems#config-errors

My own research
Manually count SRE Weekly
Newsletter from
https://sreweekly.com/

Got bored, terrible data; mostly
noise, about 1% of articles had
useful information in it.

https://sreweekly.com/

My own research, cont
Explore the Google postmortems dataset. Many thousands of reports of all
severities dating back many years.

Multiple-choice classification of causes and triggers by author at creation time.
Can manually keyword match against data.

Measured config push, binary push, both, and neither.

Config and Binary are equal in size; config is slightly higher than binary (by 2%) in
when comparing only “big” severity outages.

Year over year, config was slightly higher up until 2018 when the pattern reversed,
and in 2019 equal.

Results
Insufficient data from public studies to draw a strong conclusion.

Sufficient data from internal study to conclude that, internally, config and code are
equally risky. This is actually somewhat reassuring because it is not in conflict
with the theory that config is code.

Unsatisfying, possibly insignificant result that config is slightly more likely to be a
cause in large outages than code. But looks like it was higher in the past.

So the theory is incorrect, or is Google an outlier and manages that risk well?

Risk Mitigations

There’s always low hanging fruit
Simple Testing Can Prevent Most Critical Failures (OSDI 2014) shows that simple
testing can eliminate 1/5th outages in systems observed, lesson is there’s always
low hanging fruit.

If config is code, and config changes are equally likely to cause an outage as code
changes are, then config testing should be part of the CI/CD.

1. Simple parse test
2. Validation test (using same code as main program)

Config that is a program can perform assertions; all those less powerful languages
need you to write the test program.

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

Put everything in version control
Everything, even “running a command against an API endpoint” (e.g. schema
changes).

Make a script if necessary. Try to avoid “human runs a maintenance command
from their workstation.”

Code review and audit logs address time to resolve incidents by having
information about change more visible.

Recall the two users of any system
● Help the administrators make good decisions.
● The sooner a config is validated after commit, the better

○ Validation that happens only during deploy is better than nothing, but slow feedback loops lead
to unhappy people

○ Factor out validation into small binaries to run during code review

● Configs that are the result of generators can show diffs against the last
version in code review

○ Showing the author and reviewer the closest thing to “how the bare metal will change”
improves understanding

○ Corollary: Config generators need investment in error reporting to aide the humans, rather
than confuse them

● Automatic config formatting just like code formatters
○ Removes cognitive burdens when reviewing change

Staging/Pre-production environments
End to end functional testing of behaviours before users also see them.

Verifying config changes do not break those behaviours just as you do for code.

Useful especially if parts of configuration are in the user request.

Can never be equivalent to production.

Staging environments

https://speakerdeck.com/charity/engineering-large-systems-when-youre-not-google-or-facebook-test-in-prod?slide=12

https://speakerdeck.com/charity/engineering-large-systems-when-youre-not-google-or-facebook-test-in-prod?slide=12

Property-based Testing and Fuzzing
Recall our state space is the Cartesian product of the dimensions of our config C
with a possibly large but finite number of values.

Fuzz is a useful exploratory tool when the state space of the input is intractably
large to brute force, and also fun.

Fuzzers don’t test behaviour and don’t know how to make logical tests, and can
take a long time to uncover a bug

Progressive Rollouts
Pre-production testing cannot reach 100% coverage.

The final test for config changes are when it hits production.

The safest way to manage that risk is progressive rollouts.

Bonus points for using automated analysis and stopping/rolling back if necessary.

Requires careful engineering of the system as well as the rollout system, and
regular drilling on fast rollbacks

Progressive Rollouts and Split Brains

1
1

1

Progressive Rollouts and Split Brains

2
1

1

?

?

Progressive Rollouts of Config and the Split Brain
Some global systems pass messages between zones about their state, and make
assumptions about those peers state.

During a config rollout, a peer might detect another is misbehaving or broken
when it is really a change of parameters not visible yet to that peer.

One method to address this is to share local decision outputs as well as inputs in
messages so the peers can crosscheck the work.

Delete code to simplify config
Simplicity is hard work, but things to look for:

● obsolete config flags never set, or set to defaults. Delete the condition and
the path never taken.

○ Automate it! (ClangMR, go fix, etc)

● Machine-discoverable information. Instead of passing task counts in a config,
and needing to keep that synchronised, let the program query for task counts.
Opportunity allows for autoscaling.

○ Example: GCS backend

● Stop Config Spirals, remove scaffolding, layers of abstraction (hark back to
aiding understanding)

Change the power of your config language
● Low power languages are less likely to have unexpected side effects inside

their own scope.
○ Power reduction allows automation to make more assumptions and optimisations about intent.
○ Requires more options to capture the nuance of user intent.
○ Language modification is a small barrier to change

● High power languages are more likely to be able to describe the user’s intent
correctly.

○ Power increase reduces ability for machines to understand intent
○ Requires less work on part of implementer to capture all possible meanings and allows users

to adapt to change.
○ Use an existing popular languages improves operator understanding

● Both directions lead to outages!

Other mitigations (TODO EXPAND)
● progressive rollouts of config, testing in prod, canary analysis
● pre-submit validation using same code as production in smaller binaries
● code formatters, and generated config differs
● fuzzing. earlier observation that config is a large state space; we can explore

with fuzzers.
● actual functional testing, that’s what staging environments are for
● continuous integration of configs as well as code.
● deleting of config paths when no longer used; clang-mr; reference the

Mythical Man Month on “simplicity”, but advice on what to look for (ala
blobstore config)

● mitigations for split brain when doing progressive rollouts (ala autopilot global
config)

Configuration is Code, treat it so
1. In theory, configuration should be a high risk of outage
2. Experimentally, not enough data to make strong conclusion
3. Risk mitigations that treat config the same as code work very well

a. Everything in version control and no out-of-band maintenance
b. Continuous testing and high coverage
c. Fast feedback
d. Contextful error messages
e. Safe rollout practices and fast rollbacks
f. Delete everything you don’t need

g. Automate it

References!
You can find links to the external
references by visiting the URL
encoded in this QR Code.

Also please rate this session on the
O’Reilly website or mobile app by
clicking the big yellow button on the
session page.

