

Prometheus – For Big & Little People

 Simon Lyall

● Sysadmin (it says “DevOps Engineer” in my job title)

● Large Company, Auckland, New Zealand

● Use Prometheus at home on workstations, home servers and
hosted Vms

● Run Prometheus at work on Kubernetes Clusters, EC2
infrastructure, etc

Prometheus – For Big & Little People

● Intro

● Getting Data

● Alerting
● Storage

● Display

● Extras

● Summary

Prometheus Introduction

● Metrics

– Name [Labels] + Timestamp + Value
● Single Daemon

– Connects to “exporters” via HTTP GET
– Gets list of values
– Gathered often. 10s or 15s common

● Stored on local Disk

● Exported via API

Prometheus Introduction

node_cpu{cpu="cpu0",mode="idle"} 3.47769314e+06

Name Labels Value

node_uname_info{domainname="(none)",machine="x86_64",no
dename="prometheus.darkmere.gen.nz",release="3.10.0-
862.14.4.el7.x86_64",sysname="Linux",version="#1 SMP Wed
Sep 26 15:12:11 UTC 2018"} 1

Prometheus Introduction

api_http_request_latencies_second{quantile="0.5"}

count(up{nodename=~".*web.*”} == 1)

sum(kube_node_labels{job="kube-state-metrics"}) by
(label_failure_domain_beta_kubernetes_io_zone)

Getting Data

● Exporters

– Gather metrics from source
– Expose http endpoint
– Around 100 distributed

● Directly metriced Apps

● Internal apps should expose metrics

Getting Data – Many Layers

● Prometheus can gather data on all layers of the stack

● For Kubernetes:

– Cloudwatch
– node_exporter
– Kublet
– Cadvisor
– Kube-state-metrics

Getting Data – Even More Layers

● Kubernetes (cont)

– JMX (JVM)
– Application directly exposed
– Service Mesh
– Load balancers
– Blackbox
– Other apps

Getting Data - Problems

● Thousands of metrics per Server

● Overlaps of metrics (ie memory used by app)

● Alignment between layers (instance v node , pod v
container)

● Some source costly (ie Cloudwatch)

● Code/Apps not instrumented

Getting Data

● Small

– Standard exporters (node, db, blackbox)
– Textfile via Node_exporter for special stats

● Medium

– Many standard exporters
– Textfile, mtail, gateways to other monitoring systems

● Large

– Instrumented code
– Federation and summaries

Service Discovery

● Static in Config

● Built in EC2 / Openstack / Kubernetes / etc

● File Based

Service Discovery

● Small – Static config, Simple auto discovery

● Medium – Mainly Auto discovery, templated config

● Large – Lots of templates, Split servers

Alerting

Alerting

● Prom + alert rules + alert manager (xN)

● Amtool

● Silences (eg during maintenance)
● Labels very important

● Slack / Email

● PagerDuty / Victorops / Opsgenie / pagertree

● Free -> $50 per user per month

Alerting – Low priority Alerts

● Schedule alert during office hours

● Have on dashboard?

● Avoid email
● Keep low (say <20 /day)

Alerting

● Small

– Send oncall everything
● Medium

– Prioritise high/low split
● High

– Multiple Groups / Multiple Levels
– Prioritise Filtering, Automating fixes

Storage
● Problem

– Even small installations do thousands of writes per
second

– Reads/Queries may run against huge amounts of data
● Standard TSDB

– Handles the above. But...
– Not redundant
– Can get corrupt
– Doesn’t scale forever

● Replacements – Complicated and new

Storage
● Small Site

– Backup data regularly. Rollback to backup in event of
outage

● Medium Site

– Backup data regularly. Flip to 2nd instance in event of
outage.

● Large Site

– External clustered storage (Thanos, M3, InfluxDB)
– Federate to scale collection/storage

Display

● Built in dashboard

– Okay for testing, developing rules
● API

– Can be used by other tools (eg Grafana)
– Although doesn’t seem to be common (and ???)

● Lack of good tools to explore thousands of different metrics
easily

Display - Grafana: The Good

● Best Option

● Well Used Prometheus Datasouce

– Well tested
– Some Smart features: Annotations, Variables, Prompting

● Also has Alertmanager Datasource

Display – Grafana: The Bad

● Over 800 publicly shared dashboards that use Prometheus.

● Unfortunately quality varies a lot.

● Sometimes broken by new exporters or prometheus versions
● Don’t match you architecture / naming

● Sometimes just buggy

● Like to reload stats every 10s

● Lack sample picture (so must be downloaded to evaluate)

Display – Grafana: The Ugly

Display – Getting Grafana to work

● Just download a bunch and try them out

● But may be a good source for ideas

● Or even be easy to fix
● Check the layout, queries inside.

Display: Grafana Before

Displays: Grafana After

Display – Arranging: Overview

● Overview dashboards

● Good for big screens

● Show summary

Display: Arranging Drill down

● Drill-down dashboards

● You will be using interactively to change targets, time
periods

● Perhaps linked off of summary dashboards

Display

Display

Display: Unsolved

● You are collecting hundreds of metrics from each server. You
can’t display them all

● Even on a “one server per page drill-down”
● You don’t even know which metrics you should be looking at

Display

● Small

– Prebuilt
● Medium

– Mostly prebuilt
● Big

– Hand-rolled summaries
– Drilldowns
– Dashboards for different teams
– Automatically created Dashboards

Extra: RED and USE

● USE – Resource Scope

– Utilisation - the average time that the resource was busy
servicing work

– Saturation - the degree to which the resource has extra
work which it can't service, often queued

– Errors – Count of error events
● RED – Request Scoped

– Rate – Rate of requests
– Errors – Rate of errors in requests
– Duration - Distribution

Extra: Self Monitoring

● Run a continuous check against external monitoring site

● External monitoring site alerts of connections not received.

● Options

– DeadMansSnitch.com
– Healthcheck.io
– Some Incident Management vendors

Small Site

● Single Instance of everything

● Config in git

● Backup data regularly. Rollback to backup in event of outage
● Use Free/No/Cheap Incident Management

● Free healthcheck.io failure checking

● Minimal exporters

Medium Site

● Some duplicate/redundant instances

● Config in git, Have some templates

● Backup data regularly. Flip to 2nd instance in event of outage.

● Use Incident Management Vendor

● Paid failure checking or rely on redundancy

● Instrument as much as possible

Large Site

● Duplicate/redundant instances, Scale Horizontally

● Template and autodiscovery everywhere

● External clustered storage
● Use Incident Management Vendor

● Cross monitoring

● Look at filtering what you keep.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

