
  

Prometheus – For Big & Little People

                   Simon Lyall

● Sysadmin (it says “DevOps Engineer” in my job title) 

● Large Company, Auckland, New Zealand

● Use Prometheus at home on workstations, home servers and 
hosted Vms

● Run Prometheus at work on Kubernetes Clusters, EC2 
infrastructure, etc 



  

Prometheus – For Big & Little People

● Intro

● Getting Data

● Alerting
● Storage

● Display

● Extras

● Summary



  

Prometheus Introduction

● Metrics

– Name [ Labels ] + Timestamp + Value
● Single Daemon

– Connects to “exporters” via HTTP GET
– Gets list of values
– Gathered often. 10s or 15s common

● Stored on local Disk

● Exported via API



  

Prometheus Introduction

node_cpu{cpu="cpu0",mode="idle"} 3.47769314e+06

Name                     Labels                         Value

node_uname_info{domainname="(none)",machine="x86_64",no
dename="prometheus.darkmere.gen.nz",release="3.10.0-
862.14.4.el7.x86_64",sysname="Linux",version="#1 SMP Wed 
Sep 26 15:12:11 UTC 2018"} 1



  

Prometheus Introduction

api_http_request_latencies_second{quantile="0.5"} 

count(up{nodename=~".*web.*”} == 1)

sum(kube_node_labels{job="kube-state-metrics"}) by 
(label_failure_domain_beta_kubernetes_io_zone)



  

Getting Data

● Exporters

– Gather metrics from source 
– Expose http endpoint
– Around 100 distributed

● Directly metriced Apps

● Internal apps should expose metrics



  

Getting Data – Many Layers

● Prometheus can gather data on all layers of the stack

● For Kubernetes:

– Cloudwatch
– node_exporter
– Kublet
– Cadvisor
– Kube-state-metrics



  

Getting Data – Even More Layers

● Kubernetes (cont)

– JMX ( JVM )
– Application directly exposed
– Service Mesh
– Load balancers
– Blackbox
– Other apps



  

Getting Data - Problems

● Thousands of metrics per Server

● Overlaps of metrics ( ie memory used by app )

● Alignment between layers ( instance v node , pod v 
container )

● Some source costly (ie Cloudwatch)

● Code/Apps not instrumented 



  

Getting Data

● Small

– Standard exporters ( node, db, blackbox )
– Textfile via Node_exporter for special stats

● Medium

– Many standard exporters
– Textfile, mtail, gateways to other monitoring systems 

● Large

– Instrumented code
– Federation and summaries 



  

Service Discovery

● Static in Config

● Built in EC2 / Openstack / Kubernetes / etc

● File Based



  

Service Discovery

● Small – Static config, Simple auto discovery
 

● Medium – Mainly Auto discovery, templated config

● Large – Lots of templates, Split servers



  

Alerting



  

Alerting

● Prom + alert rules + alert manager ( xN)

● Amtool

● Silences (eg during maintenance)
● Labels very important

● Slack / Email 

● PagerDuty / Victorops / Opsgenie / pagertree

● Free -> $50 per user per month



  

Alerting – Low priority Alerts

● Schedule alert during office hours

● Have on dashboard?

● Avoid email
● Keep low (say <20 /day )



  

Alerting

● Small

– Send oncall everything
● Medium

– Prioritise high/low split
● High

– Multiple Groups / Multiple Levels
– Prioritise Filtering, Automating fixes



  

Storage
● Problem

– Even small installations do thousands of writes per 
second

– Reads/Queries may run against huge amounts of data
● Standard TSDB

– Handles the above. But...
– Not redundant
– Can get corrupt
– Doesn’t scale forever

● Replacements – Complicated and new



  

Storage
● Small Site

– Backup data regularly. Rollback to backup in event of 
outage

● Medium Site

– Backup data regularly. Flip to 2nd instance in event of 
outage.

● Large Site

– External clustered storage ( Thanos, M3, InfluxDB )
– Federate to scale collection/storage



  

Display

● Built in dashboard

– Okay for testing, developing rules
● API

– Can be used by other tools ( eg Grafana )
– Although doesn’t seem to be common ( and ??? )

● Lack of good tools to explore thousands of different metrics 
easily



  

Display - Grafana: The Good

● Best Option

● Well Used Prometheus Datasouce

– Well tested
– Some Smart features: Annotations, Variables, Prompting

● Also has Alertmanager Datasource



  

Display – Grafana: The Bad

● Over 800 publicly shared dashboards that use Prometheus.

● Unfortunately quality varies a lot.

● Sometimes broken by new exporters or prometheus versions
● Don’t match you architecture / naming

● Sometimes just buggy

● Like to reload stats every 10s

● Lack sample picture (so must be downloaded to evaluate)



  

Display – Grafana: The Ugly



  

Display – Getting Grafana to work

● Just download a bunch and try them out

● But may be a good source for ideas

● Or even be easy to fix
● Check the layout, queries inside. 



  

Display: Grafana Before



  

Displays: Grafana After



  

Display – Arranging: Overview

● Overview dashboards

● Good for big screens

● Show summary 



  

Display: Arranging Drill down

● Drill-down dashboards

● You will be using interactively to change targets, time 
periods

● Perhaps linked off of summary dashboards



  

Display



  

Display



  

Display: Unsolved

● You are collecting hundreds of metrics from each server. You 
can’t display them all

● Even on a “one server per page drill-down”
● You don’t even know which metrics you should be looking at 



  

Display

● Small

– Prebuilt
● Medium

– Mostly prebuilt
● Big

– Hand-rolled summaries
– Drilldowns
– Dashboards for different teams
– Automatically created Dashboards



  

Extra: RED and USE

● USE – Resource Scope

– Utilisation - the average time that the resource was busy 
servicing work

– Saturation - the degree to which the resource has extra 
work which it can't service, often queued

– Errors – Count of error events
● RED – Request Scoped

– Rate – Rate of requests
– Errors – Rate of errors in requests
– Duration - Distribution



  

Extra: Self Monitoring

● Run a continuous check against external monitoring site

● External monitoring site alerts of connections not received.

● Options

– DeadMansSnitch.com
– Healthcheck.io
– Some Incident Management vendors



  

Small Site

● Single Instance of everything

● Config in git

● Backup data regularly. Rollback to backup in event of outage
● Use Free/No/Cheap Incident Management

● Free healthcheck.io failure checking

● Minimal exporters 



  

Medium Site

● Some duplicate/redundant instances

● Config in git, Have some templates

● Backup data regularly. Flip to 2nd instance in event of outage. 

● Use Incident Management Vendor

● Paid failure checking or rely on redundancy

● Instrument as much as possible



  

Large Site

● Duplicate/redundant instances, Scale Horizontally

● Template and autodiscovery everywhere

● External clustered storage
● Use Incident Management Vendor

● Cross monitoring

● Look at filtering what you keep.
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