

Going to the
CLOUD!

DISCLAIMER:
This talk is about work in progress. Completeness

and accuracy aren't guaranteed beyond best
effort

Starting point

● Old hardware
● A lot of profitable legacy software
● Openstack + bare metal
● Working CI/CD
● Working configuration management
● Small infrastructure team
● Software is an essential business component, but

our business is not software

Cloud considerations

● Scaling
– Cloud systems let you scale in smaller increments on demand

● Variability in demand
– Low variability in demand for computing resources supports staying in-house

– Highly variable systems benefit from moving to the cloud far more

● Legal issues
– Privacy regulations in the EU itself

● Also different laws between different EU countries

– Brexit

● Software design
– Observability must be built into the software

Choices

● Already using Docker
● Already moving to microservices
● Moving from Mesos to Kubernetes was easy
● This made Google's Cloud offering a slightly

better choice than Amazon
– Google being cheaper helped a bit

● Neither was cheaper than running our own
hardware

The technical research phase

● Lasted about half a year
● Focus on two main areas:

– How to manage infrastructure manually at the
vendor

– Tooling and automation

Why manual work?

● Familiarisation
● Concepts
● Discover limitations

Choosing automation tools

● Shell scripts
– Via gcloud + gsutil

● Ansible
– We had Ansible experience

– Built some systems with ansible

– Very limited in what it can do without using gcloud

● Puppet
– Was not a serious contender six months ago

● Terraform
– The best of the lot

Configuration management

● We still need configuration management for
systems which aren't in a container
– Stateless systems implemented in a 12-factor style

are best put in containers and managed via
Kubernetes

● Puppet was the obvious choice, because we
were already using it

Inventory

● There isn't a nice CMDB out there yet, which
can automagically provision VMs in the cloud
and provide information to config-mgmt and
orchestration tools
– We currently hack our way around this by using

tags and the Google API

Moving into high speed

● One meeting
– Three people

– Thirty minutes

● Decided on goals for a proof of concept
– Complete automation

– Custom tooling around the application

– Fixed target application for a test deployment

● Took us about three months of full time effort to wrap
up the PoC

Tools of choice

● Terraform
– This is a pretty fast moving tool

– They have good documentation
● For some value of good.

● Puppet
– New Puppet repo, ignoring a lot of legacy.

– Jumped Puppet version

Terraform

● Base network project, all network related things
are done in this project

● Other projects use an instance group with a
mostly standard template
– They reference network configs from the base

project

● Google metadata is used to tie together Puppet
and Terraform

* Documentation
* API
* Stateful data
* IPv6

Google Cloud Documentation

● Lags behind software
● Is often inconsistent
● This has not changed in about three years

API

● Quite inconsistent in some regards
– Particularly about referencing other properties

– Name or reference?

● Needs actual examples
– A lot of examples

Stateful data

● There are no good answers
● Google offers multiple options for storage
● Some of these are more reliable than others
● Maintenance can cause outages, but automatic

failover for CloudSQL needs a whole zone to
fail

IPv6

● Google does not put it's money where it's
mouth is wrt IPv6
– IPv6 support is very limited in the compute

environment

● We started off by routing IPv6 traffic to our
loadbalancers in the legacy environment and
then proxying to IPv4 in Google

Monitoring

● Stackdriver looks promising for log management
– It has quite a few retention limitations

– New pricing makes it cheaper to run an ELK stack

● There isn't a really good alternative to running
your own time-series database
– Especially if you use that data for alerting

● Stackdriver is a good replacement for the ELK
stack, but not for high quality analytics/monitoring

Legacy code

● Plan on migrating it wholesale
– Even if you plan to rewrite it

● Rewrites will take longer than you plan for

● This does not benefit from moving to the cloud
● Database migrations are “interesting”

Spectre/Meltdown impact

● CPU utilisation doubles
– We are currently on rather over-provisioned

hardware, so actual impact is minimal

● Anything which does a lot of system calls is
slowed quite a bit
– Large data import went from 26 hours to 56

Summary

● Cloud migration is a business decision, but remember that
costs will probably increase

● Outsourcing your L1 operations team to people who do not
care about your business needs still has the same problems as
a decade or two ago

● Choosing which provider to go with often involves small
differences based on your existing stack

● The tooling available is still very raw, and we are still
discovering operational design patterns

● Migrating to the cloud may require a wholesale change in
process

?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

