


DISCLAIMER:
This talk is about work in progress. Completeness
and accuracy aren't guaranteed beyond best
effort



Starting point

* Old hardware

* A lot of profitable legacy software

* Openstack + bare metal

* Working CI/CD

» Working configuration management
 Small infrastructure team

» Software is an essential business component, but
our business is not software



Cloud considerations

Scaling
- Cloud systems let you scale in smaller increments on demand

Variability in demand
- Low variability in demand for computing resources supports staying in-house
- Highly variable systems benefit from moving to the cloud far more

Legal issues

- Privacy regulations in the EU itself
* Also different laws between different EU countries

- Brexit

Software design
— Observability must be built into the software



Choices

* Already using Docker
* Already moving to microservices
* Moving from Mesos to Kubernetes was easy

* This made Google's Cloud offering a slightly
better choice than Amazon

- Google being cheaper helped a bit

* Neither was cheaper than running our own
hardware



The technical research phase

_asted about half a year

—OCcus on two main areas:

- How to manage infrastructure manually at the
vendor

- Tooling and automation



Why manual work?

e Familiarisation
e Concepts
 Discover limitations



Choosing automation tools

» Shell scripts
- Via gcloud + gsutil
* Ansible

- We had Ansible experience
- Built some systems with ansible
- Very limited in what it can do without using gcloud

* Puppet
- Was not a serious contender six months ago

 Terraform
- The best of the lot



Configuration management

* We still need configuration management for
systems which aren't in a container

- Stateless systems implemented in a 12-factor style
are best put in containers and managed via
Kubernetes

 Puppet was the obvious choice, because we
were already using it



Inventory

* There isn't a nice CMDB out there yet, which
can automagically provision VMs in the cloud
and provide information to config-mgmt and
orchestration tools

- We currently hack our way around this by using
tags and the Google API



Moving into high speed

* One meeting
- Three people
— Thirty minutes

e Decided on goals for a proof of concept
- Complete automation
— Custom tooling around the application
- Fixed target application for a test deployment

* Took us about three months of full time effort to wrap
up the PoC



Tools of choice

e Terraform
- This Is a pretty fast moving tool

- They have good documentation
* For some value of good.

* Puppet
- New Puppet repo, ignoring a lot of legacy.
- Jumped Puppet version



Terraform

* Base network project, all network related things
are done in this project

* Other projects use an instance group with a
mostly standard template
- They reference network configs from the base
project

* Google metadata is used to tie together Puppet
and Terraform






Google Cloud Documentation

* Lags behind software
* |s often inconsistent
* This has not changed in about three years



API

» Quite inconsistent in some regards
- Particularly about referencing other properties
- Name or reference?

 Needs actual examples
- Alot of examples



Stateful data

 There are no good answers
* Google offers multiple options for storage
e Some of these are more reliable than others

 Maintenance can cause outages, but automatic
fallover for CloudSQL needs a whole zone to
fail



IPVv6

* Google does not put it's money where It's
mouth is wrt IPv6

- IPv6 support is very limited in the compute
environment

* We started off by routing IPv6 traffic to our
loadbalancers in the legacy environment and
then proxying to IPv4 in Google



Monitoring

» Stackdriver looks promising for log management
- It has quite a few retention limitations
- New pricing makes it cheaper to run an ELK stack

 There isn't a really good alternative to running
your own time-series database

- Especially if you use that data for alerting

» Stackdriver is a good replacement for the ELK
stack, but not for high quality analytics/monitoring



Legacy code

* Plan on migrating it wholesale

- Even if you plan to rewrite it
* Rewrites will take longer than you plan for

* This does not benefit from moving to the cloud
« Database migrations are “interesting”



Spectre/Meltdown impact

« CPU utilisation doubles

- We are currently on rather over-provisioned
hardware, so actual impact is minimal

* Anything which does a lot of system calls Is
slowed quite a bit

- Large data import went from 26 hours to 56



Summary

Cloud migration is a business decision, but remember that
costs will probably increase

Outsourcing your L1 operations team to people who do not
care about your business needs still has the same problems as
a decade or two ago

Choosing which provider to go with often involves small
differences based on your existing stack

The tooling available is still very raw, and we are still
discovering operational design patterns

Migrating to the cloud may require a wholesale change In
process






	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

