
From Commit to CFrom Commit to Cloudloud
The why and how of an efficient build pipeline

Daniel Hall
LIFX Cloud Engineer

@smarthall

Deployments should beDeployments should be
Fast

10 minutes is too long
Small

Ideally a single commit
You must be aware of the whole change

Easy

As little human involvement as possible
Minimal context switching
Simple to understand

We believe this becauseWe believe this because
There are less things to break
You can focus on one thing at a time
The changes are fresh in everyone's memory
Devs should be focused on the app
Each project should be easy to learn
Nobody should be afraid to deploy

We can back it up tooWe can back it up too
We have 30 separate microservices
88 Docker machines running across 15 workers
Around 7 deploys to prod every working day
4 emergency rollbacks in 1.5 years
Maintained by myself and a single developer

How did we do it?How did we do it?
You'll need:

A microservices architecture (kinda optional)
A git repo that can run triggers on push
A build agent that allows several steps
A packaging format that tracks dependencies
Something to manage your cluster of machines

Deployment stepsDeployment steps
1. Write some code
2. Push to the git repo
3. Application is built
4. Automated tests are run
5. Application is packaged
6. Deployment to staging
7. Test in staging
8. Single click to approve for prod
9. Deployment to production

3. Application is built3. Application is built
Happens on trigger
Not all apps need to be built
We have a build.sh script in each repo
We wanted to be consistent across all our services
You could also use Makefiles

4. Automated tests are run4. Automated tests are run
We actually do this at the end of build.sh
Again consistency is key
Don't do end to end testing here
We do end to end testing continuously against staging
and prod

5. Application is packaged5. Application is packaged
We build docker containers with a Dockerfile
Push it to an internal docker repository on GCS
Anyone should be able to pull this for testing
You could also use RPMs, Debs, and others
If you do make per app repos, to make repo metadata
creation time short

6. Deployment to staging6. Deployment to staging
We use Apache Mesos with Marathon
For us we essentially assemble a JSON file from a
template
Then submit it to Marathon using curl
You can use these with or without docker

8. Single click approval8. Single click approval
At this point our change is well tested
Trigger the deployment to staging
Most build agents have this, or let you build it easily
Audit who clicks this!

9. Deployment to production9. Deployment to production
Should be very similar to prod right?
Remember, consistency!
We use Marathon and Mesos in prod too

Thanks!Thanks!
LIFX is seeking a Cloud Engineer and Firmware

Engineer to join our Melbourne team.

Either see this link, email me at or
come talk to me at LCA all week.

See: and

daniel.hall@lifx.com

https://goo.gl/0KOX1C https://goo.gl/YY30Gh

mailto:daniel.hall@lifx.com
https://goo.gl/0KOX1C
https://goo.gl/YY30Gh

This TalkThis Talk
Will be available at:

I'll post this URL on my Twitter (@smarthall)
https://slides.com/smarthall/from-commit-to-cloud

https://slides.com/smarthall/from-commit-to-cloud

