

Thinking outside the box
How to be an effective sysadmin under pressure

Steven McDonald
Anchor

2014-01-06

What is “the box”?

● A confined thinking space.
● Confined by the person doing the thinking.
● Inside the box live past experiences, common

wisdom and other existing knowledge.
● Thinking inside the box isn't really thinking, it's

reusing past experience.

Why think outside the box?

● Usually, thinking inside the box is quicker,
easier and produces the same result.

● Most of the time, you want to confine your
thinking to “the box”.

● This is why we write scripts to automate so
much in-box thinking. Out-of-box thinking
cannot be scripted.

● It's important to know when to leave the box.

Scenario 1

● You run a web server that is being DDoS'd by a
large number of remote IP addresses with
randomly generated (but mostly realistic) user
agents.

● The customer for this service is getting antsy
because they have an advertising campaign
going on and don't want to lose traffic.

Scenario 1: Solution

● Write a script to watch the access log files and
count the number of different user agents
associated with each remote IP address.

● Based on that information, the script would
block IP addresses over a set threshold of user
agents in iptables.

Scenario 1: Analysis

● This solution is far from a perfect one, as it
would have many false positives for large
organisations with web proxies.

● However, restoring the website for 90% of the
user base is preferable to it being usable for
0%.

Scenario 1: Conclusion

● Sometimes a perfect solution is not possible in
the immediate term.

● Implementing a partial solution is better than
continuing to hunt for a perfect one.

Scenario 2

● You are migrating hundreds of GB of static
assets to a new host with faster disks in
preparation for a large traffic spike.

● It becomes evident that you will not have all the
files copied to the new host before the
increased traffic hits.

● You can't be confident in the old host's ability to
serve the expected level of traffic.

Scenario 2: Solution

● Configure the web server on the new host to
first look for the file locally, and then proxy the
request to the old host if it is not found.

● Cut traffic over to the new host.
● Continue copying files across in the

background.

Scenario 2: Analysis

● This is a really, really ugly hack. This kind of solution
would never be implemented in production in an ideal
world.

● This solution adds a dependency on an additional web
server, as well as being inefficient and not easily
supportable.

● However, given the strict time constraint of the
scenario, it is the least of three evils because it
guarantees the best possible performance while still
ensuring availability of all resources.

Scenario 2: Conclusion

● Sometimes, there is no good solution that
satisfies every requirement.

● Sometimes requirements can be revised, as
this can be a sign that too ambitious goals have
been set.

● In cases where the requirements are
immutable, a working bad solution is better than
leaving the problem unsolved.

Scenario 3

● You manage a system that uses a shared NFS
filesystem as a temporary holding area to pass
files around.

● The NFS server is experiencing strange
performance issues that will take time to
diagnose and fix.

● Meanwhile, the critical nature of this data flow
path means that the website depending on this
system is down.

Scenario 3: Solution

● Set up a web server on the nodes that need to
send data, serving files from a local directory.

● Work with the web developers to have the
receiving nodes fetch files over HTTP instead
of NFS, using Redis to store the list of URIs to
process.

Scenario 3: Analysis

● Fixing NFS would have taken hours or days
due to the nature of the problem (which is
outside the scope of this talk).

● Bypassing NFS takes about 30 minutes while
code is rewritten to speak HTTP.

● We get paid to keep the website up, not to
manage an NFS server. Cutting out a
malfunctioning component satisfies that goal.

Scenario 3: Conclusion

● It is far too easy to focus on fixing the root
cause, instead of the problem the customer
actually cares about.

● The problem needs to be clearly defined before
it is solved, otherwise you are heading in the
wrong direction before you begin.

Scenario 4: To be continued...

● Return to this lecture theatre at 13:20 on
Wednesday for a more in-depth case study!

Summary

● Thinking outside the box is unnecessary to solve
most common problems.

● I have shown one partial solution, one bad solution
and one unconventional solution to uncommon
problems. All of these solutions have one thing in
common: they are effective.

● Uncommon problems call for extreme measures,
especially when coupled with tight deadlines.

● In a word, be pragmatic in your solutions.

Closing thoughts

● Any and all advice given here can and should
be disregarded at your discretion.

● Yes, that includes the above point. And this
one.

Questions

