

Linux In Defence:

Linux SOE Evolution At JORN (by Jamie Birse)

Introduction

- Evolution of the Linux SOE at JORN
- Why use a Linux SOE
- Origins of the Linux SOE, Future Trends and Expectations
- Implementation of System Hardware
- Designation of Engineering Timelines
- Example of Simplified Linux SOE
 - Linux SOE Deployment
 - Troubleshooting
- Execution of the Linux SOE at JORN
 - Components of the Linux SOE
 - Types of Automated System Builds
- Summary

BACKGROUND

- JORN is a High Frequency radar system spread across Australia at 8 sites and requires significant computing power to achieve successful operation.
- The network is divided into 2 segments, an operational network and a development network.
 - The operational network consists of 3 independent radars consisting of 2 sites each, with a command and control site for co-ordination.
 - The development network is a single site consisting of multiple development, replica and prototype LANs.
 - Currently around 600 Linux systems
- The Operational Radar
 - Has a Key Performance Indicator uptime of 98%.
 - Is a ground based radar analogous in operation, support and maintenance to a jet fighter - there is no help desk support at Mach 2.

BACKGROUND – cont'

- Operations Support
 - Supported by radar support techs at each site.
 - No dedicated system administrators at operational sites.
 - Secondary support is given by development site personnel during working hours.
- To build, maintain, support and develop these systems there is a heavy reliance on:
 - Engineering
 - Configuration management and documentation
 - Training, logistics and obsolescence management

Why Use a Linux SOE

- Requirements
 - A standard operating system base e.g. RHEL.
 - Adherence to strict security requirements.
 - A standard directory/file structure.
 - A standard set of applications and libraries across OS versions.
 - Easily expanded when new requirements arise.
 - A centralised management of
 - Users, Logs, Updates, Procedures
 - A system that is configuration managed and updated by a change management process.
 - New systems must be interoperable with legacy systems until phased out or ported to newer systems.
- The Linux SOE and supporting engineered processes fulfil these requirements.

Linux SOE, where did it come from and where is it going?

- Former systems implemented (and still operational):
 - VAX and VMS
 - DEC/Compaq/HP Alpha and VMS
 - Compaq/HP Alpha and Tru64 5.1 and 4.1g.
- However, these systems were
 - Expensive to maintain with high support costs
 - Tending towards obsolescence with time
 - No clear future for the equipment or their corresponding Operating Systems
 - Hard to find people who want to work with them
- Linux is a well known and obvious choice as a successor
 - Runs on inexpensive commodity hardware (Intel and AMD)
 - "No" OS licensing costs

BAE SYSTEMS

- Linux distribution evolution
 - Trial on Red Hat 7.1 32bit
 - Why It was on a magazine?
 - Develop SOE, deploy Red Hat 7.3 32bit, but it was EOL.
 - Update SOE, deploy RHEL 4.7 32bit
 - RHEL is chosen for its stability
 - There is a trial version of RHEL 4.5 64bit
 - Minor updates to RHEL 4.8 32 bit due to newer hardware
 - Update SOE, deploy RHEL 5.6 64bit, as this occurs RHEL4 is EOL
 - RHEL 6.1 64bit is deployed for servers only at the same time
 - Future, trialling of Scientific Linux as a replacement/addition.

RHEL Clone Migration

- The rationale for migrating towards a RHEL clone in the Linux SOE
 - Not the support cost per node directly, though the Australian Government wants value for the Tax Powers money
 - Cost to verify and acquire extra node support is disproportionately high.
 - Currently employ 6 Linux engineers to support and develop the SOE.
 - Of 3 Red Hat support calls, no satisfactory outcome provided.

Engineering Timelines

- The length of time from engineering requirements to SOE deployment:
 - RH 7.3: 3 years. However, time of RH 7.3 deployment, it was end of life.
 - RHEL4.7: 4 years. 32bit only employed due to software dependency on 64bit RHEL version.
 - Prototype of 64bit RHEL4.5 was in progress in parallel but encountered above software dependency issues.
 - Linux SDE released on RHEL 4.5 64bit prototype + admin on SUN equipment, adds SDE software tools clearcase, clearquest, eclipse.
 - Changes in engineering process greatly increased development time.
 - RHEL 5.6: 2 years.
 - RHEL 6.1: 6 months, servers only and 64bit only.
 - Move to 6.1 was due to intended future use of IPA, risk reduction for the next network wide update to RHEL 6.

Components to the Linux SOE within JORN

- RHEL iso's, 3rd party RPMS, TAR files, configuration files, scripts.
- 650+ scripts and configuration files.
- Hostname Structured configuration File Hierarchy.
- Automated System Builds.

System Hardware

- HP DL380 (starting G3 up to G7), DL360, DL320, XW6000, Z400, some white box systems, supermicro systems, bespoke hardware.
- SDE hardware: SUN Blades and SAN.
- Nvidia graphics cards (due to software constraints) and up to 4 HP 24 inch monitors per workstation.
- Networking: Primarily Cisco but Dell, Foundry and Enterasys also used.

Configuration File Hierarchy

- Configuration files are named using hostnames or part thereof.
- Due to the structured nature of hostnames we are able to create a hierarchy of configuration files based on the hostname structure.
- Example hierarchy of configuration files for node coeslcp010: lconfig_jindalee.dat lconfig_coe.dat lconfig_coes.dat lconfig_coes_p.dat* lconfig_coeslcp.dat lconfig_coeslcp0.dat lconfig_coeslcp01.dat lconfig_coeslcp010.dat

*Note: Node Naming is not ideal for Linux SOE.

- Configuration files can be inserted below the base/default lconfig_jindalee.dat by inclusion in hostname configuration files. These are: lconfig_processor.dat lconfig_workstation.dat lconfig_jorn operational node.dat
 - lconfig_jorn_development_node.dat
- Tools assist to generate a single configuration file for a hostname to:
 - Debug, Rationalise, Compare, Test and review configuration baselines

Configuration file hierarchy allows for changes:

- Change at the top applies to all systems across JORN
- Change can be applied to only one system
- Change can be applied to a subnet or group of systems
- Adding new systems potentially as simple as adding it to the hosts file and its MAC Address to the install server's configuration file.

Types of Scripts

- Setup scripts: setup applications, services, configuration files, permissions, directories and files, common functions, wrapper scripts, etc.
 - Most setup scripts modify existing linux conf files or generate new ones from the lconfig_* dat.
 - Allows for conf files changes between RHEL version or even package updates.
- Install scripts: install packages, TAR files, build applications.
- Make scripts: These usually generate specific files, i.e hosts, hosts.equiv, etc.
- Utility scripts: common administration tasks.
- Create scripts: create install media or files, eg. install dvds, install usb keys, kickstart files and generated tar files from configuration management.
- Configured Linux files. e.g. licence files.

Types of Automated System builds

- Primary install server: NFS, NIS, NTP, TFTP, DHCP, DNS, Home directories for Linux and Unix, adding configured users and managed users.
- Failover server: DRBD and heartbeat, DRBD and corosync, rsync and manual scripts.
- Failover NFS server: DRBD and heartbeat, DRBD and corosync, rsync and manual scripts.
- Oracle Database server:
- Processor nodes: general, waveform generators, digital receivers.
- Workstation nodes: operator consoles, developer workstations, JIAB.
- Standalone system:

A Linux SOE Install Simplified

- 1. A customised kickstart RHEL install. Auto reboot.
- 2. Automatic start of the OTHR Linux SOE setup script that calls many other setup scripts. Auto reboot.

The Linux SOE Site Deployment

- 3. Generate an install USB key (32GB key) for the site install server (from another install server).
- 4. Prepare all hardware to be installed.
- 5. Boot the install server off the USB key. Return an hour later.
- 6. PXE boot the failover install server and any other primary servers. Wait 45 minutes.
- 7. PXE boot all other systems to be installed.
- 8. Set passwords.
- 9. Run confidence tests.

Troubleshooting Unknown Problems

- 1. Reinstall it for a quick fix and back to a known baseline.
- 2. Site support techs do investigation.
- 3. Raise with Linux engineering team

Summary

What does a Linux SOE give us?

- 1. A known base operating system and tool set.
- 2. Repeatability.
- 3. Easy expansion of the network.
- 4. Access to a great number of new tools.
- 5. A clear upgrade path, both hardware and operating system.
- 6. The ability for non Linux radar maintainers to maintain 600 Linux systems across 8 sites.

Questions?