

You can't spell KABOOM
without OOM

Anthony Towns

Introduction

What is this talk about?

Debugging system problems

● A walkthrough of a real problem

● Some strategies for understanding the problem

● Some tactics for dealing with “out of memory”
problems

Koji

● Build system used in Fedora
● Also used in Red Hat

● Database (postgresql)
● Hub (XMLRPC, python, apache)
● Web service (python, apache)
● Workers (mock, rpmbuild)

Memory Usage
(Background)

● Memory is important!

● NFS, disk, mmap, swap are all great, but not
good enough

● OOM killer

The Problem

● In August/September the koji hub had to be
rebooted every few days.

● Symptoms:
● Interactive requests started getting laggy
● We got Nagios alerts because it was unresponsive

to network requests
● OOM killer messages in logs/console

Easy Solution

Basic Fix

● Sysadmins get a Nagios alert
● They reboot the system
● Everything works again!

Basic Fix – Why it works

● “Stateless” server process
● Independent database as state store
● Network file system
● Independent workers

Basic Fix – Why it doesn't work

● Not entirely stateless: workers need to be
restarted too

● Sysadmins don't like getting Nagios alerts
● ...especially at 3am
● ...especially every other day

Fixing the bug

Past memory problems in koji

● Some OOM problems a few months earlier
● “List all history for everything forever”

● Results:

 Nagios alerts

 setrlimit() memory use enforcement

 Loss of trust in code reliability

Bug in koji?

● Could be an actual bug
● Could be overuse

● Enable debug logging
● Add more logging
● Troll through apache usage logs

Long term memory leak?

● Maybe it's not a specific call, but a gradual
memory leak of some sort?

● mod_python isn't great at letting memory get
reclaimed

● Upgrade to RHEL 6 with newer mod_python ?
● Convert to wsgi ?
● Reduce apache MaxRequestsPerChild ?
● Python memory management debugging ?

Number of processes?

● But anyway, setrlimit() should mean it can't be
any single process

● avg_mem_per_process * n_process < mem

● Put a limit on n_process as well as memory
usage?

● Reduce MaxClients in apache
● (But this can impact users)

Test script (“crash_koji.py”)

● Open n sockets to the hub
● Write enough of the request to each socket to

cause apache to assign a process to the
connection

● Sleep for a bit
● Send the rest of the request to each socket
● Get the result from each socket
● Report how many of the requests succeeded

Just give it more memory?

● Move the VM
● Double the RAM
● Update DNS

● …

● Watch it keep crashing

First Principles
Debugging

Debugging with Tuz

Need some debugging help, eh?
 http://www.flickr.com/photos/stibbons/3208705403/

Debugging with Tuz

So you're running out of memory? Are you sure?

Debugging with Tuz

Why does the OOM killer happen?

Debugging with Tuz

How does the kernel track memory?

Debugging with Tuz

Can we monitor memory use by processes?

Debugging with Tuz

How about kernel memory structures?

Debugging with Tuz

Then let's do that!

Debugging with Tuz

How'd it go?

Debugging with Tuz

If it's not any of the processes, how about the
kernel?

<mikeb> aj: is that 2.5G in nfs_inode_cache ?

Debugging with Tuz

Well there you go. Now get me another beer.

A Kernel Bug?

A Kernel
Regression
in RHEL 5?

Evidence for:

● It's in /proc/slabinfo, of course it's the kernel
● The problem only started when we updated to

RHEL 5.7

Evidence against:

● Plenty of other RHEL 5.7 systems work fine –
internally and at customers

● Every other time a developer has tried fobbing
their own bug off on the kernel or compiler or a
library

Verdict:

● Hung jury:

● Sysadmins think it's koji's fault
● koji developers think it's the kernel's fault
● Kernel guys tell us to give them an Oops

message before they can form an opinion

“Double jeopardy”

● No rule against it when debugging!

● So gather some more evidence and re-indict!

Logging kernel behaviour

while true; do

 date; free; ps aux;
 cat /proc/slabinfo;
 echo ----;
 sleep 1;
done >> ~/memory-use.log

Logging kernel behaviour
(when your machine is out of memory)

● Can't run programs –

 they need to be reloaded from disk,

 which needs memory

 but there isn't any

 also heavy I/O contention with swap

monmemuse.py

● So write your own script
● Look in /proc/meminfo for “free”
● Look in /proc/12345/ for statm and cmdline for

“ps aux”
● Look In /proc/slabinfo for kernel stuff
● Print out anything that's using significant

memory, every few seconds
● “for I in range(100): time.sleep(0.1)”

Analyse the data

Pictures are persuasive!

Conclusion

Real fix?

● File a bugzilla
● Get your manager to ping Linux NFS

developers
● (Or get your Red Hat support rep to do both

those for you :)
● Install the update from the next RHEL release

Test cases

● “building all Red Hat products” is not a very
useful test case

● Managed to reproduce it by hand by cp'ing
trees around to simulate regeneration of maven
repositories

● (Filled up a shared NFS volume while doing
this, ooops)

● Wrote a simulator (output of find, simulate a cp
but with essentially random content)

● Clever kernel devs realise all that's needed is

 i=0; while true; do

 echo x > $dir/$i; i=$(($i+1));

 done

Success!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

