Wi GriffithuniversiTy

/)

Griffith

UNIVERSITY

Ubuntu 8.10 AD Instructions

Developed by Matthew Lye, CTS and Anthony Thyessen, RCS
Prepared by Matthew Lye, CTS

SANITISED VERSION

VERSION 1.3

File Name:Ubuntu 8.10 AD Instructions.odt
Exported: 13/01/2010 Page 1

Wi GriffithuniversiTy

1 Overview and Assumptions

This document assumes that you are adapting an image that already has the correct configuration for
student networked homes as outlined in Ubuntu 8.10 Linux Lab Build Instructions version 1.1.

This document replaces section 2.3 for the purpose of configuring the Griffith University Linux student
computing environment to connect to Active Directory.

2 Documentation Guide

Linux is an OS that maintains two different environments. Both have full control over the system unlike
the windows DOS and GUI environment. As such many changes are easier to make via the terminal or
command line environment.

For this document any command shown as below is a terminal command and should by entered into a
terminal exactly as shown:

echo This is a terminal command.

Some changes are easier to make via the GUI and are shown in a 'path' format. This takes the form of
a heading and arrows to point to the next heading to click until the path is found. For example:

System — Administration — Printing

This command would take you through the menu to the printing control panel.

File Name:Ubuntu 8.10 AD Instructions.odt
Exported: 13/01/2010 Page 2

Wi GriffithuniversiTy

3 Configuration Instructions

This method of implementing Active Directory based authentication does not require the computer to

be connected to the domain. Active Directory is used for password authentication and the mounting of
network drives only.

3.1 Configuring and Installing Kerberos

3.1.1 Installing and Configuring Kerberos

Install the Kerberos modules for PAM with the following command:
sudo apt-get install libpam-krb5 krb5-user krb5-config

Edit the Kerberos configuration file to contain our configuration

Open the Kerberos file:

sudo nano /etc/krb5.conf

Replace the contents with the following:

[logging]

default = FILE:/var/log/krb5libs.log
kdc = FILE:/var/log/krb5kdc.log

admin server = FILE:/var/log/kadmin.log

[libdefaults]

default realm = STUDENT.GRIFFITH.EDU.AU
dns lookup realm = true

dns lookup kdc = true

ticket lifetime = 4h

forwardable = yes

[realms]

STUDENT.GRIFFITH.EDU.AU = {
kdc = student.griffith.edu.au:88
admin server = student.griffith.edu.au:749
default domain = student.griffith.edu.au

}

STAFF.GRIFFITH.EDU.AU = {

kdc = staff.griffith.edu.au:88

admin server = staff.griffith.edu.au:749
default domain = staff.griffith.edu.au

}

[domain realm]

.student.griffith.edu.au = STUDENT.GRIFFITH.EDU.AU
student.griffith.edu.au = STUDENT.GRIFFITH.EDU.AU
.staff.griffith.edu.au = STAFF.GRIFFITH.EDU.AU
staff.griffith.edu.au = STAFF.GRIFFITH.EDU.AU

[appdefaults]

pam = {
debug = false
ticket lifetime = 36000
renew lifetime = 36000

File Name:Ubuntu 8.10 AD Instructions.odt
Exported: 13/01/2010 Page 3

Wi GriffithuniversiTy

forwardable = true
krb4 convert = false

}

3.1.2 Testing Kerberos

As part of the installation package previously installed we have three commands that can be used to
test connection to the AD environment.

kinit: check out ticket
klist: list checked out tickets

kdestroy: kill tickets

3.2 Configuring PAM.

PAM is the underlying architecture used for all linux logins. In this process we are instructing PAM to
use pam_krb5.so (Kerberos/AD Authentication) instead of the previous method of using pam_Idap
(NDS Authentication).

3.2.1 Configuring Login Process

Set default Kerberos config for pam (configures pam to use Kerberos quickly):

sudo auth-client-config -p kerberos example -a

Configure each PAM component
Open PAM Auth:

sudo nano /etc/pam.d/common-auth

Replace the contents of the file with the following:

/etc/pam.d/common-auth - authentication settings common to all services

This file is included from other service-specific PAM config files,
and should contain a list of the authentication modules that define
the central authentication scheme for use on the system

(e.g., /etc/shadow, LDAP, Kerberos, etc.). The default is to use the
traditional Unix authentication mechanisms.

As of pam 1.0.1-5, this file is managed by pam-auth-update by default.
To take advantage of this, it is recommended that you configure any
local modules either before or after the default block, and use
pam-auth-update to manage selection of other modules. See
pam-auth-update (8) for details.

H= o S o S S S S S S S

must have a valid shell and group
auth required pam_shells.so
auth required pam group.so

#allow local login, ignore broken shadow entry
auth sufficient pam unix.so try first pass
auth requisite pam succeed if.so uid > 1000 quiet

#attempt to mount home directory
auth required pam mount.so use first pass

File Name:Ubuntu 8.10 AD Instructions.odt
Exported: 13/01/2010 Page 4

Wi GriffithuniversiTy

#allow valid AD login
auth sufficient pam krb5.so use first pass realm=STAFF.GRIFFITH.EDU.AU
auth sufficient pam krb5.so use first pass realm=STUDENT.GRIFFITH.EDU.AU

#deny access if none of the above are valid
auth required pam _deny.so

Open PAM Account:

sudo nano /etc/pam.d/common-account

Replace the contents of the file with the following:

/etc/pam.d/common-account - authorization settings common to all services

This file is included from other service-specific PAM config files,
and should contain a list of the authorization modules that define
the central access policy for use on the system. The default is to
only deny service to users whose accounts are expired in /etc/shadow.

As of pam 1.0.1-5, this file is managed by pam-auth-update by default.
To take advantage of this, it is recommended that you configure any
local modules either before or after the default block, and use
pam-auth-update to manage selection of other modules. See
pam-auth-update (8) for details.

H= o S K S S S S S S S S h

user must have a valid shell
account required pam_shells.so

allow local account, ignore broken shadow entry
account required pam unix.so broken shadow

#UID Validation Check
account sufficient pam_succeed if.so uid < 1000 quiet

#Kerberos ticket check
account [default=bad success=ok user unknown=ignore] pam krb5.so

#If ticket check succeeds, allow login
account required pam_permit.so

Open PAM Password:

sudo nano /etc/pam.d/common-password

Remove or comment out all entries in the file. Griffith policy prevents users from being allowed to
change AD passwords on the local machine.

Open PAM Session:

sudo nano /etc/pam.d/common-session

File Name:Ubuntu 8.10 AD Instructions.odt
Exported: 13/01/2010 Page 5

Wi GriffithuniversiTy

Replace the contents of the file with the following:

#

/etc/pam.d/common-session - session-related modules common to all #services
#

This file is included from other service-specific PAM config files,

and should contain a list of modules that define tasks to be performed
at the start and end of sessions of *any* kind (both interactive and

non-interactive).

#

As of pam 1.0.1-5, this file is managed by pam-auth-update by default.
To take advantage of this, it is recommended that you configure any

local modules either before or after the default block, and use

pam-auth-update to manage selection of other modules. See

pam-auth-update (8) for details.

session optional pam keyinit.so revoke

session required pam limits.so

session [default=ignore success=ok] pam succeed if.so service in crond quiet use uid
session required pam_unix.so

session sufficient pam_succeed if.so uid < 1000 quiet

session sufficient pam_succeed if.so service in su-1l quiet
session optional pam mount.so

session sufficient pam_krb5.so realm=STUDENT.GRIFFITH.EDU.AU
session sufficient pam_krb5.so realm=STAFF.GRIFFITH.EDU.AU
session required pam_deny.so

3.2.2 Mounting H-Drives

The mounting of student H-Drives is done through the PAM Mount module calling a custom developed
script.

This mounting script has only been tested under Samba 3, it should be re-examined once Samba 4
becomes the default standard.

Install the applications required:

sudo aptitude install libpam-mount libexpect-perl libio-pty-perl libio-stty-perl
samba-client samba-common smbfs

Copy the script from Ent to the local machine:

sudo cp /source/linux extras/update/mount.ad /sbin/mount.ad
A full copy of the script with instructions found in Appendix A

Now edit pam mount to call our new script by opening the PAM Mount configuration script:

sudo nano /etc/security/pam mount.conf.xml

Find the section <!-- Volume definitions --> and add this line:

<volume fstype="ad" path="% (USER)" mountpoint="/mnt/H % (USER)"/>

Find the tag <umount>umount %(MNTPT)</umount> and replace it with:
<umount>/sbin/umount.% (FSTYPE) % (MNTPT)</umount>

link mount script to be used to unmount and set permissions:

sudo 1ln -s /sbin/mount.ad /sbin/umount.ad
sudo chmod 700 /sbin/mount.ad
sudo chmod 700 /sbin/umount.ad

File Name:Ubuntu 8.10 AD Instructions.odt
Exported: 13/01/2010 Page 6

Wi GriffithuniversiTy

4 Appendix A: Mount Script and Installation Instructions

Create the script on the machine:

sudo nano /sbin/mount.ad

Copy the following into the file:

#!/usr/bin/perl
#

mount.ad user mount-point [-o options]
mount.ad -u (user|mount-point)
umount.ad (user|mount-point)

Read a password from stdin
will prompt for one from a TTY if present.
and mount it at the given mount-point

(generally from a "pam mount")
Find the users AD H-Drive,
(creating the directory). Also create

invocation, but

'H' in users home to that mount (as the user).

Any and all mount options are completely ignored at this time.

##

#

#

#

#

#

#

#

a symbolic link from
#

#

#

#

#

Anthony Thyssen

#

use strict;

use FindBin;

use Expect;

use Sys::Syslog;

24 September 2009

my S$PROGNAME = S$FindBin::Script;
SENV{PATH}="/usr/bin:/bin:/sbin";

sub Usage {

print STDERR @ , "\n";
@ARGV = ("$FindBin::Bin/$PROGNAME");

while (<>) {
next if 1 .. 2;
last if /" ###/;
s/™#S//; s/ /)
print STDERR;

}

exit 10;
}
debugging level 1=
2
3

my S$DEBUG = 0;

log calls and Errors only
Intermediate Variable Results
Sub-Command Calls and Interaction

my $LOG DEBUG = 0; # log to "/tmp/mount ad.log"

Hardcoded elements

my QAD Types = gw(student staff); # the trees in the AD

my %AD Domain; # EG:

map { $AD Domain{$ } =

my %AD Server; # EG:

map { S$SAD Server{$ } =

STUDENT-TEST

uc($)} @AD Types;

S_

student.griffith.edu.au
."griffith.edu.au" } @AD Types;

forest

File Name:Ubuntu 8.10 AD Instructions.odt
Exported: 13/01/2010

Page 7

Wi GriffithuniversiTy

Not needed if "rpcclient" information method used

my SOPTION RPCCLIENT = 1; # use rpcclient, no need to work out a DN

my $LDAP DN = (

staff => "QU=Staff", # the realm is worked out from Server name
student => "OU=Students", # <== Note that it is "Students"

)

map { (SLDAP _DN{$ } .= S$AD Server{$ }) =~ s/\./,DN=/; } @AD Types;

Not needed if direct DFS mount path used

This is needed as Samba v3.2.14 has broken DFS referral handling

my $OPTION LOCAL DFS = 1; # do DFS redirect locally, using the following lookup

my %AD DFS = (# DFS Equivelent: mapping user type and campus to real home
'staff,na’ => "breeze-staff.staff.griffith.edu.au",
'staff,gc' => "sneeze-staff.staff.griffith.edu.au",
'student,na' => "breeze-stud.student.griffith.edu.au",
'student,gc' => "sneeze-stud.student.griffith.edu.au",
)
map { S$AD DFS{$ } = "//SAD DFS{$ }/users\S$"; } keys %AD DFS;

The mount commands to use

my S$LIST mount = "/bin/mount -t cifs";

my $CIFS mount = "/sbin/mount.cifs";

my S$CIFS umount = "/sbin/umount.cifs";

__

Initialisation and Sub-routines

Debug tracing -- if no TTY log to "/tmp/mount ad.log"
if ($DEBUG) {
if ($LOG_DEBUG) ({

open (STDOUT, ">>/tmp/mount ad.log") || die;
open (STDERR, ">&STDOUT") ;
chmod (0600, "/tmp/mount ad.log") || die;

}

chomp (my $date = gx(date +'%$Y-%m-%d %R:%S'));

print "S$date $0 QARGV\n";
#system('id'");

if ($DEBUG ==) { # Turn off if only command call logging

$SDEBUG=0; # Turn off if only command call logging

}

sub ErrorExit {
openlog ($PROGNAME, 'ndelay', 'LOG AUTHPRIV');
syslog ('LOG _ERR', '%s', "@ ");
closelog() ;
exit (1) ;
}

sub OkExit {
openlog ($PROGNAME, 'ndelay', 'LOG AUTHPRIV');
syslog ('LOG_INFO', '%$s', "@_ M);
closelog();
exit (0);
}

sub FindMountingUser {

Try to find the username for the file system on this mount point

my $mount point = shift;
my $mounts = “S$LIST mount;

my (Suser) = Smounts =~ /\W([a-z][a-z0-9]*) on S$mount point\s/;

File Name:Ubuntu 8.10 AD Instructions.odt
Exported: 13/01/2010

Page 8

Wi GriffithuniversiTy

}

return (Suser) ;

sub FindUsersMount {

}

#

Try to find the mount point for this user

my Suser = shift;

my $mounts = “$LIST mount;

my (S$mount point) = Smounts =~ /\WSuser on (\/\S+)\s/;
return (Smount point);

Remove the indent of a here file... (for debug ouput)

sub herefile {

#
#

#

my S$string = shift;

Sstring =~ s/"\s+#.*\n//gm;
$string =~ s/#.*//qg;
$string =~ s/"\s+\| ?//gm;
$string =~ s/\s+$/\n/g;
return $string;

completely remove full line comments
remove end-of-line comments

remove the indent part of the line
remove any extra end-of-line spaces

+= o

Argument Handling and Testing

Input Argument Variables

my (Suser, Smount point, Sunmount);

if

}

("$0" =~ /umount/ || $ARGV[0] eq '-u') |
Umount Argument handling
shift if SARGVI[0] egq '-u';
Usage "Not enough arguments" if Q@ARGV < 1;

Usage "Too many arguments" if QARGV > 1;
$ = shift;
if (/\N//) A

Smount_point = $;

Suser = FindMountingUser ($Smount point) ||
ErrorExit "Filesystem \"S$mount point\" not mounted";
}
elsif (/"la-z]la-20-9]1*$/) {
Suser = $_;
Smount point = FindUsersMount (Suser) ||
ErrorExit "User \"Suser\" has no H-drive to umount";
}
else { # Invalud pattern
ErrorExit "Invalud argument \"$ \"";
}

Sunmount++;

else { # Normal mounting

}

Usage "Not enough arguments" if Q@ARGV < 2;

Suser = shift;

Smount point = shift;

ErrorExit "File system already mounted on \"Smount point\""
if FindMountingUser ($mount point);

mount options are just ignored at this time

ErrorExit "MountPoint \"$mount point\" is not a path"

unless Smount point =~ /"\//;

#ErrorExit "Username \"S$user\" is NOT a S-number"

unless Suser =~ /s[0-9]1{4,}/;

File Name:Ubuntu 8.10 AD Instructions.odt
Exported: 13/01/2010

Page 9

Wi GriffithuniversiTy

my Quser = getpwnam(Suser);

ErrorExit "User \"Suser\" not on local system" unless @user;

my $mount link = "Suser[7]/H";

UMount handling

sub CleanUp {
print "Umount and CleanUp\n" if S$DEBUG;
open (SAVE _OUT, ">&STDOUT"); open (STDOUT, ">/dev/null");
open (SAVE ERR, ">&STDERR"); open (STDERR, ">&STDOUT");
system ($SCIFS umount, S$mount point);
open (STDOUT, ">&SAVE OUT") ;
open (STDERR, ">&SAVE ERR") ;

ErrorExit "File system \"S$mount point\" failed to umount"
if FindMountingUser ($mount point);

rmdir Smount point;

Remove the symbolic link - as the user!

$> = Suser([2] if $< == 0; # Effectivally become the user!
unlink $mount link if -1 S$mount link;
S> =0 if $< == 0; # Return to normal root status?
#system('id'"); # check return to root user
}
Cleanup old mounts (Umount operation)
CleanUp () ;
OkExit ("Umounted AD H-Drive for User Suser") if Sunmount;
__
——-- STEP 1 ----
Get password this is typically not a desiriable thing,
but as the ldap server does not permit anonymous binds, we don't
really have a choice!

chomp (my $stty reset = gx(stty -g 2>/dev/null));

if (length S$stty reset) { # input from terminal?
system('stty', '-echo');
print "Password for Suser[6] (Suser) H-Drive Mount: ";
}
chomp (my S$passwd = <STDIN>);
if (length S$stty reset) {
system('stty', $stty reset);
print "\n";
}
#printf "Passwd = \"S$passwd\"\n" if S$SDEBUG;
-———— STEP 2 ----
Retrive Location of Users Home Directory

If the first server (student) fails, try the other.

my (SAD Home, S$User);
for (QAD Types) {

SUser= lc "Suser\@$SAD Domain{$ }";
print "Get home for $User...\n" if $DEBUG;

if (SOPTION RPCCLIENT) { # switch between "rpcclient" and

"ldapsearch"

File Name:Ubuntu 8.10 AD Instructions.odt
Exported: 13/01/2010

Page 10

Wi GriffithuniversiTy

#

Get Users homeDirectory simply using samba "rpcclient"

#

printf herefile gg{
\
| /usr/bin/rpcclient -U Suser SAD Server{$ } \\
| -c 'queryuser S$Suser'

} if SDEBUG >= 3;

start request for home directory
my $SAD = Expect->spawn (
'/usr/bin/rpcclient', '-U', S$Suser, S$AD Server{$ },
'-c', "queryuser S$user"
) or ErrorExit "rpcclient command failed: $!";

Modify communications

SAD->log stdout (0) unless $DEBUG >= 3; # no echo to stdout (unless DEBUG) !
#SAD->stty (qw(—-echo)); # do not echo input (FAILS)

#SAD->notransfer (1) ; # keep all the output in accumulator (FAILS)

Get the output -- give password if requested.
$AD->expect (10, 'Home Drive', =-re => qr/NT STATUS [A-Z]+/,
[gr/Password:/i =>
sub { shift->send("Spasswd\n"); exp continue; } 1,
);
let command finish, if not yet done
SAD->close () ;

if ($DEBUG >= 3) {
print "Expect Error: ", $AD->exp error(), "\n" if $AD->exp error();
print "Expect Number: ", $AD->exp match number (), "\n";

}

Error Contition from Expect?

ErrorExit "AD Timeout for S$User"

if $AD->exp_error() == 1; # timeout
ErrorExit "AD system error $User : $!"

if $AD->exp error() == 4; # system error
no errors or home directory match - loop
SAD Home='"';
next if $AD->exp error(); # EOF without match
Failed to login -- loop

next if $AD->exp match() eq 'NT STATUS LOGON FAILURE';

ErrorExit "AD Failure for $User -- ".SAD->exp match ()
if ($AD_Home) = $AD->exp match =~ /NT_STATUS [A-Z]1+/;

gather and check results.

SAD Home = (split('\n', S$AD->exp after()))[0];

$AD Home =~ s/"[_:\sl+//;

SAD Home =~ s/\s+$//;

ErrorExit "AD Failure for $User -- S$SAD Home"

if $AD->exp match number() != 1; # not the home dir match

}
else {

#

Get Users homeDirectory using LDAP

This requires a hardcoded LDAP DN for the users login
#

my $LDAP DN = "CN=Suser, SLDAP DN{$ }";

File Name:Ubuntu 8.10 AD Instructions.odt
Exported: 13/01/2010 Page 11

Wi GriffithuniversiTy

printf herefile ggf{

/usr/bin/ldapsearch -x -W -LLL -H \\
ldap://$AD Server{$ } \\
-D, 'SLDAP_DN' AN\
-b, '"SLDAP DN' \\
homeDirectory

} if $DEBUG >= 3;

start request for home directory
my $AD = Expect->spawn (
qw (/usr/bin/ldapsearch -x -W -L -H),
'ldap://'.$AD Server{$ },
'-D', SLDAP_DN, '-b', SLDAP_DN,
'homeDirectory'
) or ErrorExit "ldapsearch command failed: $!";

Modify communications
SAD->log stdout (0) unless $DEBUG >= 3; # no echo to stdout (unless DEBUG) !

#SAD->stty(qw(—echo)); # do not echo input (FAILS)
#$AD->notransfer (1) ; # keep all the output in accumulator (FAILS)
Get the output -- give password if requested.
The 'numEntries:' match is important for fast EOF testing
SAD->expect (10, 'homeDirectory:', 'ldap bind:', '# numEntries:',
[gr/Password:/i =>
sub { shift->send("Spasswd\n"); exp continue; } 1,

)
let command finish, if not yet done
SAD->close () ;

if ($DEBUG >= 3) {
print "Expect Error: ", $AD->exp error(), "\n" if $AD->exp error();
print "Expect Number: ", $AD->exp match number (), "\n";

}

Error Contition from Expect?
ErrorExit "LDAP Timeout for $User"

if $AD->exp error() == 1; # timeout
ErrorExit "LDAP system error $User : $!"
if $AD->exp error() == 4; # system error

no errors or home directory was matched - loop

SAD Home='";

next if $AD->exp error(); # EOF without match

next if $AD->exp match number () == 3; # 'numEntries:' home entry not found

next if $AD->exp match number () == 2 &&
SAD->exp after() =~ /Invalid credentials/i;

Gather and check results.
SAD Home = $SAD->exp after();

SAD Home =~ s/\n\s+//; # rejoin lines if needed
SAD Home = (split('\n', $SAD Home)) [0];
SAD Home =~ s/"\s+//;

$AD Home =~ s/\s+$//;

ErrorExit "LDAP Failure for SUser -- $AD Home"
if $AD->exp match number () != 1; # not the home dir match
}
last if S$AD Home; # was a home directory found?

File Name:Ubuntu 8.10 AD Instructions.odt
Exported: 13/01/2010 Page 12

Wi GriffithuniversiTy

}

ErrorExit "No AD H-drive found for S$Suser"
unless $AD Home;

if ($DEBUG) {
printf "Home found on $User\n";
printf "AD Home = $AD Home\n";
}

-——- STEP 3 --—--
Determine the Mounting Options for the users H drive mount.

ErrorExit "Unable to get users Type"

unless $AD Home =~ /"\W\W([a-z]+)\W/;
my $AD Type = $1;
printf "AD Type = $AD Type\n" if $DEBUG;

if ($OPTION LOCAL DFS) ({
DFS Redirection -- This is a hardcoded hack! Yuck!

ErrorExit "Unable to get users Campus"
unless S$AD Home =~ /\\([a-z][a-z])\\/;
my $AD Campus = $1;
printf "AD Campus = $AD Campus\n" if $DEBUG;

SAD Home = $AD DFS{"$AD Type,$AD Campus"} . "/Suser";
ErrorExit "Unable to find AD Home Redirection"
unless defined $AD Home;

printf "AD Home (redir) = SAD Home\n" if S$DEBUG;
}

Work out the appropriate CIFS mount options
my $CIFS options = join(',',
"username=Suser,uid=Suser[2],gid=Suser[3]",
"dir mode=0700,file mode=0600",
"domain=$AD Domain{$AD Type}",

) ;

--—— STEP 4 ----
Mount the Active Directory H-drive

unless (mkdir ($mount point,0700)) {
ErrorExit "mkdir \"S$mount point\" for AD Drive: $!"
unless $! == 17; # ignore directory already exists;

}

Become the user now? (The mounting cmd SetUID -- for Ubuntu)

ErrorExit "Program \"SCIFS mount\" not installed"
unless -x "S$CIFS mount";

Do the mounting as the user (mount.cifs must be SetUID)
WARNING: if you do this the user can also umount!
They will then have a writable directory!

#

#chmod (0700, $mount point);

#chown ($user[2], Suser[3], S$mount point) 1f $> == 0;

if ((stat())[2] & 04000 && $> ==) { # SetUID and we are root!
$) = Suser[3]; # Effectivally become the user!

$(= Suser[3];

$> = Suser[2]; # pam mount will created the mount-point

File Name:Ubuntu 8.10 AD Instructions.odt
Exported: 13/01/2010

Page 13

Wi GriffithuniversiTy

$< = Suser[2]; # and CIFS mount becomes unmountable by the user

0}

printf herefile qggf{

$CIFS mount \\
$AD Home \\
$mount_point \\
-o $SCIFS options

} if SDEBUG >= 3;

start ldap request
my S$SCIFS = Expect->spawn (

$CIFS mount, S$AD Home, S$mount point, '-o', $SCIFS options
) or ErrorExit "S$CIFS mount command failed: $!";

Modify communications

SCIFS->log stdout (0) wunless $DEBUG >= 3; # no echo to stdout!

#SCIFS->stty(qw(—echo)); # do not echo input (FAILS)
#SCIFS->notransfer (1) ; # keep all the output in accumulator
Get the output -- give password if requested.

SCIFS->expect (10, -re => gr/error (\(\d+\))?:/,
[gr/Password:/i

=> sub { shift->send("S$passwd\n");

)

let command finish, if not yet done
SCIFS->close () ;

if (SDEBUG >= 3) {

print "Expect Error: ", S$CIFS->exp error(), "\n" if SCIFS->exp error();
print "Expect Number: ", $CIFS->exp match number (),

print "Expect Match: ", $CIFS->exp match(), "\n";
}

Error Contition from Expect?
ErrorExit "CIFS Timeout for $User"

if $CIFS->exp error() == 1l; # timeout
ErrorExit "CIFS system error $User : $!"
if $CIFS->exp error() == 4; # system error
my $CIFS result = (split('\n',SCIFS->exp after())) [0];

$CIFS result =~ s/"\s+//;
SCIFS result =~ s/\s+$//;

printf "CIFS result = $CIFS result\n" if S$DEBUG && $CIFS result;

if ($CIFS->exp match() =~ /error/i) {
CleanUp () ;
ErrorExit "Mount AD Failure -- SCIFS result"

}
undef S$CIFS;

---— STEP 5 ----
Check to make sure all went well.

Did we actually mount the H-drive?

unless (FindMountingUser ($mount point)) {
CleanUp; # no mount found!
ErrorExit "AD Mount Failure -- was not mounted!\n"

exp continue;

File Name:Ubuntu 8.10 AD Instructions.odt
Exported: 13/01/2010

Page 14

Wi GriffithuniversiTy

}

We need to delay a bit before doing a "Not a directory" error test.
Without this the "1ls" succeeds but I have no idea why

sleep(1l);
read test - only capture stderr
my $ls _error = “/bin/sh -c 'ls "S$mount point"' 2>&1 >/dev/null’;
if ($2? !'=0) {
CleanUp
ErrorExit "AD Mount Failure -- Directory Read Failure ($?) $1ls error"

}
print "GOOD MOUNT\n" if $DEBUG;

Create the link from users home to mount point
This is done as the user but will NOT cleanup if link fails!

$) = Suser[3] 1f $< == 0; # Effectivally become the user!
S$> = Suser[2] if $< == 0;
symlink (Smount point, S$mount link)
or ErrorExit "Mounted H-Drive for S$Suser, Link Failure -- $!";
S$> =0 if $< == 0; # Return to normal root status?

OkExit ("Mounted and Linked AD H-drive for S$Suser");

File Name:Ubuntu 8.10 AD Instructions.odt
Exported: 13/01/2010 Page 15

	 1 Overview and Assumptions
	 2 Documentation Guide
	 3 Configuration Instructions
	 3.1 Configuring and Installing Kerberos
	 3.1.1 Installing and Configuring Kerberos
	 3.1.2 Testing Kerberos

	 3.2 Configuring PAM.
	 3.2.1 Configuring Login Process
	 3.2.2 Mounting H-Drives

	 4 Appendix A: Mount Script and Installation Instructions

