
Lies, Damn Lies, Statistics and Benchmarks

The nature of the problem

Humans can't make sense of large numbers of numbers

We all know Statistics

- 87.5% of all statistics are made up on the spot
 - This one was.
- You can use statistics to prove anything
 - Including the truth
 - Sometimes
- Statistics are hard, let's go shopping
 - What numbers would you like to buy today?

Understanding the data

Not all data is the same

- You have to ask yourself
 - What does this data represent?
 - What information can be extracted from this data?

What can data represent?

- Baselines
- Progressions
- Comparative numbers
- Nothing at all
- Worse, incomplete data can be misleading.

Representing data

- The representation is as important as the data itself.
 - People evaluate the representation, not the data.
- Charts are good.
 - Choosing the right chart is important.
- Not all representations should be charts.
 - Some should be maps.
- Sometimes the right way of reporting is a simple table of data.

Benchmarks

- The sole purpose of a benchmark is to provide a marker for comparison
 - This is a single number
- Operations people don't need benchmarks
 - We need detailed statistics
 - Operations is often about tradeoffs
 - Not everything can be reduced to a single number.

Running your own benchmarks

- Performance must be measured on the same hardware as production.
- Figure out the bottleneck of the system.
 - CPU
 - Disk I/O
 - Memory
 - Network bandwidth
 - Network latency
 - Data structures/algorithms.

The result of any benchmark is typically a curve which closely follows the curve

$$1 - e^{-x}$$

Benchmarking tools

In no particular order: sar, top, iostat, vmstat, dstat, tcpdump, vnstat, mrtg, cacti, htop, free, iptraf, ntop.

