
A new device mapper
snapshot implementation

FUJITA Tomonori

NTT Cyber Space Laboratories

fujita.tomonori@lab.ntt.co.jp

NTT Cyber Space Laboratories

Snapshot, for what?

• File server
• Virtual Machine disk image

management
• Remote Replication
• Whatever you want to add here

NTT Cyber Space Laboratories

How can we implement
snapshot?

• File systems (btrfs, finally)
– This could do better than DM since file

systems know all the details

• DM
– It works for all the file systems

File systems can do better
but DM still can do something useful

NTT Cyber Space Laboratories

What does DM support now?

• Two snapshot implementations in DM
– Transient

• The information for snapshot is only in
memory

• Everything is lost when you shut down your
machine

– Persistent
• The information for snapshot is in disk

NTT Cyber Space Laboratories

What’s wrong with DM’s
persistent snapshot?

• The performance drops in inverse
proportion to the number of snapshots

• The metadata for snapshot must be in
memory

It’s not designed to keep snapshots for long time

NTT Cyber Space Laboratories

I’m not exaggerating

A co-worker recently did some tests on DM
snapshots using bonnie, and here is a rough
summary of what he got as write throughput:

No Snapshots - 373 MB/s
One Snapshots - 55 MB/s
Two Snapshots - 16 MB/s
Four Snapshots - 14 MB/s
Eight Snapshots - 6.5 MB/s

dm-devel mailing list:
http://marc.info/?l=dm-devel&m=116322663722428&w=2

NTT Cyber Space Laboratories

• Each snapshot has the own set of
exception table and exception blocks

How persistent snapshot works

Origin blocks
(including the lastest
contents)

Exception Table
(storing which blocks
are exception)

0 1 2 3 4 5

Exception blocks
(including the contents when a
snapshot was created)

60 61 81 82

The 1th is preserved at the
81th.

The 3th is preserved at the
82th.

Must be cached in
memory

… … …

NTT Cyber Space Laboratories

How a write works with
persistent snapshot

1. Sees the exception table of the first snapshot if a
block to write is preserved

2. Sees the exception table of the second snapshot if
a block to write is preserved

3. Does the same for all the snapshots
4. Writes the original block to the exception block of

all the snapshots
5. Updates the exception table of all the snapshots

More snapshots, more writes (seeks), and
poor performance !

NTT Cyber Space Laboratories

My new snapshot
implementation

• The number of snapshots is not related
with the number of writes

• The exception table is small and can
be cached efficiently in memory

All the snapshots share the exception
table and exception blocks

NTT Cyber Space Laboratories

The new snapshot code is not
written from scratch

• The code is based on Zumastor
(http://zumastor.org/), remote replication
software
– The primary server periodically sends the delta

between two snapshots to the secondary
– The secondary server always has the consistent

data

• Zumastor snapshot code works in user space
– I rewrote the code for kernel space

http://zumastor.org/

NTT Cyber Space Laboratories

The limitations

• The limitations of the btree format
used for exception table
– The maximum number of snapshots is 64
– Supports writable snapshot but it doesn’t

support the snapshot of a snapshot

NTT Cyber Space Laboratories

Status

• 2.6.29-rc1 has the flexible framework to support
multiple snapshot implementations (thanks to
RedHat DM developers)
– The code for 2.6.28 was posted to dm-devel

• git://git.kernel.org/pub/scm/linux/kernel/git/tomo/linux-
2.6-misc.git dm-snap

– I’m updating the code for 2.6.29-rc1

• TODO
– Needs to finish the journaling code for unexpected crashes
– Needs to work on performance improvement
– Needs more testings

NTT Cyber Space Laboratories

Future work

• Remote replication support (or
reinventing Zumastor)
– Adding the interface enable user space to

get the delta between snapshots
– Userspace daemon periodically sends the

delta

	A new device mapper�snapshot implementation
	Snapshot, for what?
	How can we implement snapshot?
	What does DM support now?
	What’s wrong with DM’s persistent snapshot?
	I’m not exaggerating
	How persistent snapshot works
	How a write works with persistent snapshot
	My new snapshot implementation
	The new snapshot code is not written from scratch
	The limitations
	Status
	Future work

