

Database backed

DNS

Target users

● Internet Service Providers
● Webhosting companies
● Domain Registrars
● TLD operators
● Other people with lots of domains

● Why use a database?
● Choosing an option

– Stability

– Performance

– Support

● Options
– BIND

– BIND-DLZ

– PowerDNS

Flat files don't always rock

● Flat files rock for system administrators
– DNS administrators may not have root access

– Editing flat files from the web is ... insane

● Delegating single zone management is difficult
● Edits and reloads have to be batched
● Startup times for nameserver processes

Flat files don't always rock

● Flat files cause a startup time delay on the
server process
– For BIND, this penalty is huge

● A single host, with 113K small zones took slightly over an
hour to start with flat files

● It then served data at about 30K qps

– PowerDNS is “optimised” for this task
● It took over 6 minutes to parse 113K small zones and

start serving data
● This served data at about 26K qps

BIND

● Native BIND has “some” support.
– One connection to the backend for each domain

– Low performance

BIND-DLZ

● Patch to BIND
– See http://bind-dlz.sourceforge.net/

● One/Two connections to the backend for all
domains

● User defined queries, including stored
procedures

● Supports MySQL, PostgreSQL, OpenLDAP,
BDB

BIND-DLZ architecture

DLZ DBMS

DLZ schema

● BENEFITS
– Single connection to database

– Single table needed to store all records
● Keeps it simple

● DISADVANTAGES
– No caching

– Bad performance

– Third party patch to BIND

PowerDNS

● DNS server written in C++
● Separate authoritative and recursive servers
● Strong focus on security

PowerDNS architecture

PowerDNS
frontend Database

Cache

Database
abstraction

layer

PowerDNS

● BENEFITS
– One or more connections to the database

– Two tables needed

– Internal in-memory cache makes responses fast

– Low memory footprint

● DISADVANTAGES
– Cache management

– DNSSEC and views are not supported

Lies, damn lies and statistics

● Actually, performance benchmarks
● Native BIND wasn't going to be very useful to

us. We didn't test it at all, except as a baseline
statistic.

Testing

● Test infrastructure was a single host with two
dual core Xeon CPUs at 2.something GHz and
16 GB of RAM with one disk, running the
nameserver and the database

● The clients were three pentium boxes with 1 GB
of RAM connected over a 100 Mbps network.

● We used the commandline queryperf tool to
run queries.

– queryperf -q 20 -s <IP> -d <FILE>

Results

5600
1800
2000
4800

25200
30000

Raw BIND 21700
20000

7000
21000
23000

46000

BIND-DLZ with BDBHPT, 2 queryperf clients, transaction
mode, RAMDisk
BIND-DLZ with PostgreSQL, raw queries
BIND-DLZ with PostgreSQL, Stored procedures
BIND-DLZ with PostgreSQL, SP, 8 threads
Nominum ANS, default cache size
Nominum ANS, cache size 512 MB

PowerDNS, hash as cache, 115K domains
PowerDNS, hash as cache, 3M domains
PowerDNS, RBT with single threaded cache, 3M domains
PowerDNS, RBT w/ single threaded cache, 10M domains
PowerDNS, RBT w/ multi-threaded cache, 10M domains,
2.9222rc4

Same numbers, as a graph

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

qps

Operational architecture

Slave
DC1

Slave
DC3

Master
DC1

PowerDNS

PowerDNS

PowerDNS

PowerDNS

Slave
DC2

Slony

Management
Script

