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Target users

● Internet Service Providers
● Webhosting companies
● Domain Registrars
● TLD operators
● Other people with lots of domains



  

● Why use a database?
● Choosing an option

– Stability

– Performance

– Support

● Options
– BIND

– BIND-DLZ

– PowerDNS



  

Flat files don't always rock

● Flat files rock for system administrators
– DNS administrators may not have root access

– Editing flat files from the web is ... insane

● Delegating single zone management is difficult
● Edits and reloads have to be batched
● Startup times for nameserver processes



  

Flat files don't always rock

● Flat files cause a startup time delay on the 
server process
– For BIND, this penalty is huge

● A single host, with 113K small zones took slightly over an 
hour to start with flat files

● It then served data at about 30K qps

– PowerDNS is “optimised” for this task
● It took over 6 minutes to parse 113K small zones and 

start serving data
● This served data at about 26K qps



  

BIND

● Native BIND has “some” support.
– One connection to the backend for each domain

– Low performance



  

BIND-DLZ

● Patch to BIND
– See http://bind-dlz.sourceforge.net/

● One/Two connections to the backend for all 
domains

● User defined queries, including stored 
procedures

● Supports MySQL, PostgreSQL, OpenLDAP, 
BDB



  

BIND-DLZ architecture

DLZ DBMS



  

DLZ schema

● BENEFITS
– Single connection to database

– Single table needed to store all records
● Keeps it simple

● DISADVANTAGES
– No caching

– Bad performance

– Third party patch to BIND



  

PowerDNS

● DNS server written in C++
● Separate authoritative and recursive servers
● Strong focus on security



  

PowerDNS architecture

PowerDNS
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Database
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PowerDNS

● BENEFITS
– One or more connections to the database

– Two tables needed

– Internal in-memory cache makes responses fast

– Low memory footprint

● DISADVANTAGES
– Cache management

– DNSSEC and views are not supported



  

Lies, damn lies and statistics

● Actually, performance benchmarks
● Native BIND wasn't going to be very useful to 

us. We didn't test it at all, except as a baseline 
statistic.



  

Testing

● Test infrastructure was a single host with two 
dual core Xeon CPUs at 2.something GHz and 
16 GB of RAM with one disk, running the 
nameserver and the database

● The clients were three pentium boxes with 1 GB 
of RAM connected over a 100 Mbps network.

● We used the commandline queryperf tool to 
run queries. 

– queryperf -q 20 -s <IP> -d <FILE>



  

Results
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Same numbers, as a graph
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Operational architecture

Slave
DC1

Slave
DC3

Master
DC1

PowerDNS

PowerDNS

PowerDNS

PowerDNS

Slave
DC2

Slony

Management
Script


