
What’s the time,
Mr Wolf?

limitations & workarounds
for rfc3164 timestamps

I see no problem here.

Jan 23 01:45:13 quasimodo postfix/smtpd[3578]: disconnect ↵
 from kmr04-home.tm.net.my[218.111.184.22]

Jan 23 01:45:13 quasimodo postfix/smtpd[3578]: disconnect ↵
 from kmr04-home.tm.net.my[218.111.184.22]

wtf happened to my year?

oh wait.

Jan 23 01:45:13 quasimodo postfix/smtpd[3578]: disconnect from ↵
 kmr04-home.tm.net.my[218.111.184.22]

Jan 23 01:45:13 quasimodo postfix/smtpd[27824]: lost connection ↵
 after RCPT from unknown[87.19.209.206]

Jan 23 01:45:13 quasimodo postfix/smtpd[3578]: disconnect from ↵
 kmr04-home.tm.net.my[218.111.184.22]

Jan 23 01:45:13 quasimodo postfix/smtpd[27824]: lost connection ↵
 after RCPT from unknown[87.19.209.206]

2008

2006

Oct 23 01:48:16 snowballs sshd[3769]: (pam_unix) session ↵
 opened for user harry by (uid=0)

Oct 23 01:48:16 snowballs sshd[3769]: (pam_unix) session ↵
 opened for user harry by (uid=0)

Mmm dd hh:mm:ss

HEADER

Oct 23 01:48:16 snowballs sshd[3769]: (pam_unix) session ↵
 opened for user harry by (uid=0)

Mmm dd hh:mm:ss

hostname|IPV4|IPV6

HEADER

Oct 23 01:48:16 snowballs sshd[3769]: (pam_unix) session ↵
 opened for user harry by (uid=0)

process name

MSG

Oct 23 01:48:16 snowballs sshd[3769]: (pam_unix) session ↵
 opened for user harry by (uid=0)

process name

MSG

message

Section 5.1
5.1 Dates and Times

 It has been found that some network administrators like to archive
 their syslog messages over long periods of time. It has been seen
 that some original syslog messages contain a more explicit time stamp
 in which a 2 character or 4 character year field immediately follows
 the space terminating the TIMESTAMP. This is not consistent with the
 original intent of the order and format of the fields. If
 implementers wish to contain a more specific date and time stamp
 within the transmitted message, it should be within the CONTENT
 field. Implementers may wish to utilize the ISO 8601 [7] date and
 time formats if they want to include more explicit date and time
 information.

 Additional methods to address this desire for long-term archiving
 have been proposed and some have been successfully implemented. One
 such method is that the network administrators may choose to modify
 the messages stored on their collectors. They may run a simple
 script to add the year, and any other information, to each stored
 record. Alternatively, the script may replace the stored time with a
 format more appropriate for the needs of the network administrators.
 Another alternative has been to insert a record into the file that
 contains the current year. By association then, all other records
 near that informative record should have been received in that same
 year. Neither of these however, addresses the issue of associating a
 correct timezone with each record.

Section 5.1
5.1 Dates and Times

 It has been found that some network administrators like to archive
 their syslog messages over long periods of time. It has been seen
 that some original syslog messages contain a more explicit time stamp
 in which a 2 character or 4 character year field immediately follows
 the space terminating the TIMESTAMP. This is not consistent with the
 original intent of the order and format of the fields. If
 implementers wish to contain a more specific date and time stamp
 within the transmitted message, it should be within the CONTENT
 field. Implementers may wish to utilize the ISO 8601 [7] date and
 time formats if they want to include more explicit date and time
 information.

 Additional methods to address this desire for long-term archiving
 have been proposed and some have been successfully implemented. One
 such method is that the network administrators may choose to modify
 the messages stored on their collectors. They may run a simple
 script to add the year, and any other information, to each stored
 record. Alternatively, the script may replace the stored time with a
 format more appropriate for the needs of the network administrators.
 Another alternative has been to insert a record into the file that
 contains the current year. By association then, all other records
 near that informative record should have been received in that same
 year. Neither of these however, addresses the issue of associating a
 correct timezone with each record.

1. implementation
2. post processing

rsyslog

“good timestamp format control; at
a minimum, ISO 8601/RFC 3339

second-resolution UTC zone”

2006-11-24T20:57:50.52Z

also,

post processing

batch

#!/usr/bin/env ruby
#

if ARGV.size != 1 then
puts “Usage: batch_log_reader.rb <filename>”
exit 1

end

$ batch_log_reader messages.log

#!/usr/bin/env ruby
#

...

#!/usr/bin/env ruby
#

...

filename = ARGV[0]

determine file name

#!/usr/bin/env ruby
#

...

filename = ARGV[0]

IO.foreach(filename) do |line|
do something

end

read file in

#!/usr/bin/env ruby
#

...

def commit(line)
datetime = line[0..15]
body = line[16..-1]
store/transmit the entry

end

filename = ARGV[0]

IO.foreach(filename) do |line|
commit(line)

end

process the line

#!/usr/bin/env ruby
#

...

def commit(line)
datetime = line[0..15]
body = line[16..-1]

entry = {}
entry[:hostname] = body.split[0]
entry[:process] = body.split[1][0..-2]
entry[:message] = body.split[2..-1].join(‘ ‘)
entry[:datetime] = datetime
entry[:digest] = MD5.hexdigest(line)
store/transmit the entry

end

filename = ARGV[0]

IO.foreach(filename) do |line|
commit(line)

end split up log entry

#!/usr/bin/env ruby
#

...

def commit(line)
datetime = line[0..15]
body = line[16..-1]

entry = {}
entry[:hostname] = body.split[0]
entry[:process] = body.split[1][0..-2]
entry[:message] = body.split[2..-1].join(‘ ‘)
entry[:datetime] = datetime
entry[:digest] = MD5.hexdigest(line)
store/transmit the entry

end

filename = ARGV[0]

IO.foreach(filename) do |line|
commit(line)

end

#!/usr/bin/env ruby
#

...

def commit(line)
datetime = line[0..15]
body = line[16..-1]

entry = {}
entry[:hostname] = body.split[0]
entry[:process] = body.split[1][0..-2]
entry[:message] = body.split[2..-1].join(‘ ‘)
entry[:datetime] = rfc3164_to_ruby_datetime(datetime)
entry[:digest] = MD5.hexdigest(line)
store/transmit the entry

end

...

get a native time object

#!/usr/bin/env ruby
#

...

def rfc3164_to_ruby_datetime(timestamp)
magic!

end

entry[:datetime] = rfc3164_to_ruby_datetime(datetime)

#!/usr/bin/env ruby
#

...

def rfc3164_to_ruby_datetime(timestamp)
timestamp = timestamp.split

month = timestamp[0]
month = Date::ABBR_MONTHNAMES.rindex(month.capitalize)

end

entry[:datetime] = rfc3164_to_ruby_datetime(datetime)

convert month to int

#!/usr/bin/env ruby
#

...

def rfc3164_to_ruby_datetime(timestamp)
timestamp = timestamp.split

month = timestamp[0]
month = Date::ABBR_MONTHNAMES.rindex(month.capitalize)

day = timestamp[1]
hour = timestamp[2].split(‘:’)[0]
min = timestamp[2].split(‘:’)[1]
sec = timestamp[2].split(‘:’)[2]

end

entry[:datetime] = rfc3164_to_ruby_datetime(datetime)

determine day, hour, min, sec

#!/usr/bin/env ruby
#

...

def rfc3164_to_ruby_datetime(timestamp)
timestamp = timestamp.split

month = timestamp[0]
month = Date::ABBR_MONTHNAMES.rindex(month.capitalize)

day = timestamp[1]
hour = timestamp[2].split(‘:’)[0]
min = timestamp[2].split(‘:’)[1]
sec = timestamp[2].split(‘:’)[2]

year = File.open(filename).ctime.year

time = Time.mktime(year, month, day, hour, min, sec)
return time

end

create the time object

#!/usr/bin/env ruby
#

...

def rfc3164_to_ruby_datetime(timestamp)
timestamp = timestamp.split

month = timestamp[0]
month = Date::ABBR_MONTHNAMES.rindex(month.capitalize)

day = timestamp[1]
hour = timestamp[2].split(‘:’)[0]
min = timestamp[2].split(‘:’)[1]
sec = timestamp[2].split(‘:’)[2]

year = File.open(filename).ctime.year

time = Time.mktime(year, month, day, hour, min, sec)
return time

end

#!/usr/bin/env ruby
#

...

def rfc3164_to_ruby_datetime(timestamp)
timestamp = timestamp.split

month = timestamp[0]
month = Date::ABBR_MONTHNAMES.rindex(month.capitalize)

day = timestamp[1]
hour = timestamp[2].split(‘:’)[0]
min = timestamp[2].split(‘:’)[1]
sec = timestamp[2].split(‘:’)[2]

year = determine_year_based_on_month(month)

time = Time.mktime(year, month, day, hour, min, sec)
return time

end

work out the year

#!/usr/bin/env ruby
#

...

def determine_year_based_on_month(month)
last bit o’ magic

end

year = determine_year_based_on_month(month)

#!/usr/bin/env ruby
#

...

def determine_year_based_on_month(month)
if @months.last != month then
@months << month

end
end

year = determine_year_based_on_month(month)

track month

#!/usr/bin/env ruby
#

...

def determine_year_based_on_month(month)
if @months.last != month then
@months << month
@year += 1 if month == 1

end
return @year

end

year = determine_year_based_on_month(month)

increment and/or return year

#!/usr/bin/env ruby
#

...

def determine_year_based_on_month(month)
if @months.last != month then
@months << month
@year += 1 if month == 1

end
return @year

end

@months = []
@year = File.open(filename).ctime.year

year = determine_year_based_on_month(month)

initialise variables

offline

$ stat --format=”%z” messages.log
2005-02-16 18:38:39.000000000 +1100

#!/usr/bin/env ruby
#

if ARGV.size != 1 then
puts “Usage: batch_log_reader.rb <filename>”
exit 1

end

filename = ARGV[0]

#!/usr/bin/env ruby
#

unless (1..2).member? ARGV.size then
puts “Usage: batch_log_reader.rb <filename> [starting-year]”
exit 1

end

filename = ARGV[0]
@year = File.open(filename).ctime.year
@year = ARGV[1] unless ARGV[1] == nil

better argument handling

$ batch_log_reader messages.log 2005

