

Principles Of Good Monitoring

By Troy Lea tlea@nagios.com

Nagios[®]

Intro

- Contractor for Nagios Enterprises
 - Develop & maintain documentation for Nagios products

A discussion about the core principles behind monitoring

In The Beginning

• Monitoring is often implemented after an avoidable event

Nag

- Like a server that ran out of disk space
- Initial monitoring solutions are easy to deploy for the basic 4
 - Host Up/Down; Disk; Memory; CPU
- The solution may be rushed to get it implemented
 - Not a lot of planning involved

Active vs Passive

- ACTIVE = your monitoring system is responsible for checking "stuff"
 - Usually on a schedule
- PASSIVE = "things" send "stuff" to the monitoring system
 - It is the "things" responsibility to send the "stuff", scheduled or event triggered
- SCENARIO: UPS loses power due to black out
 - ACTIVE = You'll find out about it when the next scheduled check occurs of the UPS
 - PASSIVE = The UPS can send an SNMP trap immediately to your monitoring solution

Back To The Beginning

- Expanding the monitoring solution
 - An ideal time to re-evaluate the chosen solution
- For example you may use the existing agent to do log monitoring
 - It includes a LOG module
 - The agent is being monitored with the ACTIVE method
 - Will this have a resource impact on your monitored servers?
 - Is this the best solution?
 - Are there better methods available?

Active vs Passive Examples

Туре	ACTIVE	PASSIVE
Disk, CPU, Mem	X	X
Log		X
SNMP Metrics	X	
SNMP Traps		Х
External Devices (roaming laptops)		X
Bandwidth Ingress/Egress	Х	
Switch/Router/Firewall Flow Data		Х

2018

Agent or Agent-less

- Whatever method you chose will require some sort of config
 - Requires interaction with your monitored "things"
- The solution you choose requires planning
 - How will you make changes to the configuration later?
 - How will you install a newer version?
- An agent can be ACTIVE or PASSIVE
 - Their configuration dictates how they will work

Monitoring Solutions

- Nagios Core / Nagios Plugins
- Elastic Stack (ELK)
- Multi Router Traffic Grapher (MRTG)
- nfdump / nfcap

Nagios Core / Nagios Plugins

- A monitoring solution that schedules the checking of "things"
- ACTIVE and PASSIVE
- It can hook into other monitoring solutions
- Nagios Plugins is the companion project
- These are the programs that do the actual monitoring
- Anyone can write a plugin for Nagios Core

Elastic Stack (ELK)

- Log data monitoring solution
- PASSIVE
- Redundant database that can tolerate node failures without loss
- Stores the log data somewhere separate from the source

- Allows for forensic investigation later
- Powerful log data analysis functionality that is easy to use

Multi Router Traffic Grapher (MRTG)

- A tool used to monitor the traffic load on network links
- ACTIVE
- Queries SNMP enabled devices for IN and OUT metrics
- Switches, routers, firewalls, operating system NICs, OIDs like temperature and humidity

nfdump / nfcap

- Detailed network traffic (IN / OUT / PORT)
- PASSIVE
- Netflow and compatible flow data
- Switches, routers, firewalls, operating system NICs

Centralise Your Solution

- I don't mean "try and install it all on the one machine"
- Multiple solutions will have similar functionality for alerting
 - You can waste a lot of time re-inventing the wheel
- Nagios Core as an example
 - Sends notifications to contacts (with advanced escalation logic)
 - Could be an email / text / submitting a ticket to a ticketing system
- While Elastic can do similar functionality why try and duplicate it?
 - You can setup passive services on Nagios Core
 - Have Elastic send the alerts to these passive services
 - Rely on Nagios to handle the notification logic

What Is Monitoring Your Monitoring?

- How will you know when your monitoring solution is DOWN?
- Use another monitoring server to monitor the production instance
- Monitor the new server from your production instance
- If either instance goes down then you will be notified about it
 Nagios[®]

Templates and Groups

- Try and approach things from a template and group methodology
- Templates allow you to define monitoring settings globally
- Use groups where possible

Allow you to change a setting in one location

OS

Documentation / Procedures

 Documentation beats any particular naming scheme every day of the week

If you need to do something, document how you do it

A document of 10 screenshots this is better than nothing

Agent Security

Agents that use TLS for data encryption are recommended

- Define the network addresses that are allowed to talk to the agents
 - Worthwhile defining a backup address of your DR monitoring sever

Backups

Implement backups of your monitoring solution from the beginning !!!!!!!!

Disaster Recovery (DR)

How does monitoring fit into your DR plan?

The End

• Thank you for you time today!

