

A Gentle
Introduction

to Ceph

Narrated by Tim Serong
tserong@suse.com

Adapted from a longer work by Lars Marowsky-Brée
lmb@suse.com

Once upon a time there was a Free and Open Source distributed
storage solution named Ceph.

Ceph...

● Has been around for a while (first stable release in July 2012)
● Has lots of goodies:

– Distributed object storage

– Redundancy

– Efficient scale-out

– Build on commodity hardware

● Most popular choice of distributed storage for OpenStack[1]

[1] http://www.openstack.org/assets/survey/Public-User-Survey-Report.pdf (October 2015)

Ceph Gives Us...

● A Storage Cluster
– Self healing

– Self managed

– No bottlenecks

● Three interfaces
– Object Access (like Amazon S3)

– Block Access

– Distributed File System

Ceph's Architecture

radosgw
(object storage)

rbd
(block device)

CephFS
(file system)

RESTful Interface
S3 and SWIFT APIs

Block devices
Up to 16 EiB
Thin Provisioning
Snapshots

POSIX Compliant
Separate Data and Metadata
For use e.g. with Hadoop

RADOS (Reliable Autonomic Distributed Object Store)

Once upon a time there was a Free and Open Source distributed
storage solution named Ceph.

Sysadmins throughout the land needed to know the components
that made up Ceph...

At the Lowest Level

FS

Disk

OSD Object Storage Daemon

File System (btrfs, xfs)

Physical Disk

OSDs serve stored objects to clients

Peer to perform replication and recovery

Put Several OSDs in One Node

FS

Disk

OSD

FS

Disk

OSD

FS

Disk

OSD

FS

Disk

OSD

FS

Disk

OSD

FS

Disk

OSD

Add a Few Monitor Nodes

M Monitors are the brain cells of the cluster
- Cluster membership
- Consensus for distributed decision making

Do not serve stored objects to clients

...And You Get a Small Ceph Cluster

M M
M

...Which You Can Write To

M M
M

client
Writes go to one OSD,
then propagate to other
replicas

...And Read From

M M
M

client
Reads are serviced by
any replica (improved
throughput)

Three Conceptual Components

● Pools

● Placement Groups

● CRUSH (deterministic, decentralised placement algorithm)

Pools

● Logical container for storage objects
● Have a set of parameters

– Name, ID

– Number of replicas or erasure coding settings

– Number of placement groups

– CRUSH rules

– Owner

● Support certain operations
– Create/read/write objects

– Snapshot pool

Placement Groups (PGs)

● Help balance data across OSDs

● One PG typically spans several OSDs

● One OSD typically serves many PGs

● Tunable – read the docs! (50-100 per OSD)

CRUSH

● Controlled Replication Under Scalable Hashing

● MONs maintain CRUSH map
– Physical topology (row, rack, host)

– Rules for which OSDs to consider for certain pool/PG

● Clients understand CRUSH
– This is the magic that removes bottlenecks

Once upon a time there was a Free and Open Source distributed
storage solution named Ceph.

Sysadmins throughout the land needed to know the components
that made up Ceph…

...because they wanted to deploy Software Defined Storage,
instead of legacy storage arrays...

Legacy Storage Arrays

● Limits:
– Tightly controlled environment

– Limited scalability

– Few options
● Certain approved drives
● Constrained disk slots
● Fewer memory variations
● Few networking choices
● Fixed controller & CPU

● Benefits:
– Reasonably easy to understand

– Long-term experience, “gut
instincts”

– Somewhat deterministic in
behaviour and pricing

Software Defined Storage (SDS)

● Limits:
– ?

● Benefits:
– Infinite scalability

– Infinite adapability

– Infinite choices

– Infinite flexibility

To infinity… and beyond!”
– Buzz Lightyear

Software Defined Storage Properties

● Throughput
● Latency
● IOPS

● Capacity
● Density

● Availability
● Reliability

● Cost

Architecting SDS Systems

● Goals often conflict
– Availability vs density

– IOPS vs density

– Everything vs cost

● Many hardware options
● Software topology offers many choices
● There is no “one size fits all”

Once upon a time there was a Free and Open Source distributed
storage solution named Ceph.

Sysadmins throughout the land needed to know the components
that made up Ceph…

...because they wanted to deploy Software Defined Storage,
instead of legacy storage arrays…

...and they found they had many questions regarding configuration
choices.

Network

● Choose the fastest you can afford

● Separate public and cluster networks

● Cluster network should be 2x public bandwidth

● Ethernet (1, 10, 40 GigE), or IPoIB

Storage Nodes

● CPU (number & speed of cores)
● Memory
● Storage controller (bandwidth, performance, cache size)
● SSDs for OSD journal (SSD to HDD ratio)
● HDDs (count, capacity, performance)

SSD Journals

● Accelerate bursts & random write IO
● Sustained writes that overflow journal degrade to HDD speed
● Help very little with read performance
● Are costly, and consume storage slots
● Use a large battery-backed cache on storage controller if not

using SSDs

Hard Disk Parameters

● Capacity matters (highest density often not most cost effective)
● Reliability advantage of Enterprise drives typically marginal

compared to cost
● High RPM increases IOPS & throughput, but also power

consumption and cost

Redundancy

● Replication:
– n exact full-size copies
– Increase read performance

(striping)

– More copies lower throughput
– Increased cluster network

utilisation for writes

– Rebuilds leverage multiple sources
– Significant capacity impact

● Erasure coding:
– Data split into k parts plus m

redundancy codes

– Better space efficiency

– Higher CPU overhead

– Significant CPU & cluster network
impact, especially during rebuild

– Cannot directly be used with block
devices

Cache Tiering

● One pool acts as transparent write-back overlay for another
● Can flush on relative or absolute dirty levels, or age
● Additional configuration complexity, requires workload specific

tuning
● Some downsides (no snapshots)
● Good way to combine advantages of replication & erasure

coding

Adding More Nodes

● Capacity increases
● Total throughput increases
● IOPS increase
● Redundancy increases

● Latency unchanged
● Eventual network topology

limitations
● Temporary impact during

rebalancing

Adding More Disks to a Node

● Capacity increases
● Redundancy increases
● Throughput might increase
● IOPS might increase

● Internal node bandwidth
consumed

● Higher CPU & memory load
● Cache contention
● Latency unchanged

Once upon a time there was a Free and Open Source distributed
storage solution named Ceph.

Sysadmins throughout the land needed to know the components
that made up Ceph…

...because they wanted to deploy Software Defined Storage,
instead of legacy storage arrays…

...and they found they had many questions regarding configuration
choices.

But learning which questions to ask enabled them to build sensible
proofs-of-concept, which they scaled up and out...

How to Size a Ceph Cluster?

● Understand your workload
● Make a best guess, based on desirable properties & factors
● Build 10% pilot / proof of concept
● Refine until desired performance is achieved
● Scale up (most characteristics retained or even improved)
● It doesn't have to be perfect, you can always evolve it later

Once upon a time there was a Free and Open Source distributed
storage solution named Ceph.

Sysadmins throughout the land needed to know the components
that made up Ceph…

...because they wanted to deploy Software Defined Storage,
instead of legacy storage arrays…

...and they found they had many questions regarding configuration
choices.

But learning which questions to ask enabled them to build sensible
proofs-of-concept, which they scaled up and out…

...and they all lived happily ever after.

Once upon a time there was a Free and Open Source distributed
storage solution named Ceph.

Sysadmins throughout the land needed to know the components
that made up Ceph…

...because they wanted to deploy Software Defined Storage,
instead of legacy storage arrays…

...and they found they had many questions regarding configuration
choices.

But learning which questions to ask enabled them to build sensible
proofs-of-concept, which they scaled up and out…

...and they all lived happily ever after.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

