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● Puppet is a centralised configuration 
management system.

● Each Puppet-managed host (“node”) runs 
a client program (the “Puppet agent”).

● The server (“Puppet master”) tells the 
Puppet agent what the node's 
configuration should be.
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Background: Puppet rollouts

● We use a single “production” environment 
with many (close to 1000) nodes.

● We use global virtual resources for things 
like monitoring on unmanaged hosts.

● We make very small changes (usually 
specific to one node) that we want to take 
effect immediately.

● This is a very slow workflow with Puppet.
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The goal

● Have Puppet manifest changes apply 
immediately after rolling out to the 
Puppet master.

● Historically, we have achieved this by 
restarting the Puppet master on every 
rollout.
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The problem

● The Puppet master takes a long time to 
parse manifests into types.

● The time taken is negligible with up to a 
few dozen manifests, but quickly 
escalates from there.

● Our tree has over 1300 manifests in our 
site directory (i.e., loaded on startup and 
not autoloaded). This takes just over a 
minute to parse.
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What solutions does Puppet offer?

● Puppet can have distinct environments 
for different groups of nodes, each with 
their own (smaller) set of manifests.

● While this is a good idea in theory, having 
all our nodes in the same environment is 
the best fit for our workflow.
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What solutions could we implement?

● Filesystem polling.
● Extract changed file information from git.
● Listen for changes to files using Linux's 

inotify subsystem.
● All of these options require one piece of 

infrastructure we needed to implement 
ourselves: the ability to expire code on a 
per-file basis.
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Per-file code expiration 

● We implemented a general-purpose file 
expiration mechanism, to expire code in 
types, and to expire entire types in type 
collections.

● Because of the generic nature of the 
expiration API, it can easily be adapted to 
any method of determining which files 
have changed.
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Option #1: Filesystem polling

● Most portable.
● Too slow. Just about any other option is 

more efficient.
● This could be implemented as a fallback 

mechanism that works anywhere, but we 
wanted to take advantage of the specific 
features of our environment.
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Option #2: Asking git for changes

● This is a very clean and efficient idea.
● It ties us to a git-based deployment 

model.
● It requires us to queue changes 

ourselves, in code that's unlikely to see 
widespread testing.

● Very easy to introduce bugs that miss 
changes.
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Option #3: inotify

● It ties us to Linux Puppet masters.
● It does not tie us to any specific 

deployment method.
● It does not require us to do any dirty work 

ourselves; the inotify code in the kernel is 
very well tested.

● Least risk of introducing bugs.
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loaded.



  

Triggering expiry with inotify

● The autoloader requests that files simply be 
expired when they change; they will be re-
autoloaded as necessary.

● The initial importer (which parses the 
environment's manifests directory) 
requests that files be reparsed when they 
change, since these are always supposed to 
be loaded.

● This all happens at the start of a catalog 
compilation.
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Triggering expiry with inotify

● The deprecated “import” function makes 
it extremely difficult to track which files 
need to be reparsed when they change.

● We elected not to support “import”, and 
took the time to remove it from our 
manifests.
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Results

● Based on initial testing on a lightly-loaded 
staging environment, we expected around 
70 seconds shaved off the average 
agent run immediately after rollout.

● After deploying to production, we had 
anecdotal speed improvements of up to 
5 minutes on nodes with complex 
catalogs.
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Limitations

● Our initial implementation does not 
correctly support the future parser.

● Reopening a class in a different file is not 
supported.

● The use of “import” is not supported.
● Native Ruby code (used for custom 

functions) does not get reloaded.



  

Get the source

● https://github.com/AnchorCat/puppet/tree/anchor/3.7.3/inotify-reload

– Depends on a yet-unreleased version of rb-inotify, 
but will work with the current master branch.

● OpenDocument sources for this presentation are 
available under the WTFPL:

– http://steven.beta.anchortrove.com/lca2015/untangling_the_strings.odp

● Ruby inotify bindings:

– https://github.com/nex3/rb-inotify

https://github.com/AnchorCat/puppet/tree/anchor/3.7.3/inotify-reload
http://steven.beta.anchortrove.com/lca2015/untangling_the_strings.odp
https://github.com/nex3/rb-inotify
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