

Untangling the Strings
Scaling Puppet with inotify

Steven McDonald
steven.mcdonald@anchor.net.au

Anchor
linux.conf.au 2015
Sysadmin miniconf

Background

● Puppet is a centralised configuration
management system.

Background

● Puppet is a centralised configuration
management system.

● Each Puppet-managed host (“node”) runs
a client program (the “Puppet agent”).

Background

● Puppet is a centralised configuration
management system.

● Each Puppet-managed host (“node”) runs
a client program (the “Puppet agent”).

● The server (“Puppet master”) tells the
Puppet agent what the node's
configuration should be.

Background: Puppet rollouts

● We use a single “production” environment
with many (close to 1000) nodes.

Background: Puppet rollouts

● We use a single “production” environment
with many (close to 1000) nodes.

● We use global virtual resources for things
like monitoring on unmanaged hosts.

Background: Puppet rollouts

● We use a single “production” environment
with many (close to 1000) nodes.

● We use global virtual resources for things
like monitoring on unmanaged hosts.

● We make very small changes (usually
specific to one node) that we want to take
effect immediately.

Background: Puppet rollouts

● We use a single “production” environment
with many (close to 1000) nodes.

● We use global virtual resources for things
like monitoring on unmanaged hosts.

● We make very small changes (usually
specific to one node) that we want to take
effect immediately.

● This is a very slow workflow with Puppet.

The goal

● Have Puppet manifest changes apply
immediately after rolling out to the
Puppet master.

The goal

● Have Puppet manifest changes apply
immediately after rolling out to the
Puppet master.

● Historically, we have achieved this by
restarting the Puppet master on every
rollout.

The problem

● The Puppet master takes a long time to
parse manifests into types.

● The time taken is negligible with up to a
few dozen manifests, but quickly
escalates from there.

The problem

● The Puppet master takes a long time to
parse manifests into types.

● The time taken is negligible with up to a
few dozen manifests, but quickly
escalates from there.

● Our tree has over 1300 manifests in our
site directory (i.e., loaded on startup and
not autoloaded). This takes just over a
minute to parse.

What solutions does Puppet offer?

● Puppet has very coarse internal caching;
it is capable of expiring an entire
environment at a time.

What solutions does Puppet offer?

● Puppet has very coarse internal caching;
it is capable of expiring an entire
environment at a time.

● With all our nodes in one environment,
this is as good (or as bad) as a Puppet
master restart.

What solutions does Puppet offer?

● Puppet can have distinct environments
for different groups of nodes, each with
their own (smaller) set of manifests.

What solutions does Puppet offer?

● Puppet can have distinct environments
for different groups of nodes, each with
their own (smaller) set of manifests.

● While this is a good idea in theory, having
all our nodes in the same environment is
the best fit for our workflow.

What solutions could we implement?

● Filesystem polling.

What solutions could we implement?

● Filesystem polling.
● Extract changed file information from git.

What solutions could we implement?

● Filesystem polling.
● Extract changed file information from git.
● Listen for changes to files using Linux's

inotify subsystem.

What solutions could we implement?

● Filesystem polling.
● Extract changed file information from git.
● Listen for changes to files using Linux's

inotify subsystem.
● All of these options require one piece of

infrastructure we needed to implement
ourselves: the ability to expire code on a
per-file basis.

Internal relationships

Per-file code expiration

● We implemented a general-purpose file
expiration mechanism, to expire code in
types, and to expire entire types in type
collections.

Per-file code expiration

● We implemented a general-purpose file
expiration mechanism, to expire code in
types, and to expire entire types in type
collections.

● Because of the generic nature of the
expiration API, it can easily be adapted to
any method of determining which files
have changed.

Option #1: Filesystem polling

● Most portable.

Option #1: Filesystem polling

● Most portable.
● Too slow. Just about any other option is

more efficient.

Option #1: Filesystem polling

● Most portable.
● Too slow. Just about any other option is

more efficient.
● This could be implemented as a fallback

mechanism that works anywhere, but we
wanted to take advantage of the specific
features of our environment.

Option #2: Asking git for changes

● This is a very clean and efficient idea.

Option #2: Asking git for changes

● This is a very clean and efficient idea.
● It ties us to a git-based deployment

model.

Option #2: Asking git for changes

● This is a very clean and efficient idea.
● It ties us to a git-based deployment

model.
● It requires us to queue changes

ourselves, in code that's unlikely to see
widespread testing.

Option #2: Asking git for changes

● This is a very clean and efficient idea.
● It ties us to a git-based deployment

model.
● It requires us to queue changes

ourselves, in code that's unlikely to see
widespread testing.

● Very easy to introduce bugs that miss
changes.

Option #3: inotify

● It ties us to Linux Puppet masters.

Option #3: inotify

● It ties us to Linux Puppet masters.
● It does not tie us to any specific

deployment method.

Option #3: inotify

● It ties us to Linux Puppet masters.
● It does not tie us to any specific

deployment method.
● It does not require us to do any dirty work

ourselves; the inotify code in the kernel is
very well tested.

Option #3: inotify

● It ties us to Linux Puppet masters.
● It does not tie us to any specific

deployment method.
● It does not require us to do any dirty work

ourselves; the inotify code in the kernel is
very well tested.

● Least risk of introducing bugs.

Triggering expiry with inotify

● The autoloader requests that files simply be
expired when they change; they will be re-
autoloaded as necessary.

● The initial importer (which parses the
environment's manifests directory) requests
that files be reparsed when they change,
since these are always supposed to be
loaded.

Triggering expiry with inotify

● The autoloader requests that files simply be
expired when they change; they will be re-
autoloaded as necessary.

● The initial importer (which parses the
environment's manifests directory)
requests that files be reparsed when they
change, since these are always supposed to
be loaded.

● This all happens at the start of a catalog
compilation.

Triggering expiry with inotify

● The deprecated “import” function makes
it extremely difficult to track which files
need to be reparsed when they change.

Triggering expiry with inotify

● The deprecated “import” function makes
it extremely difficult to track which files
need to be reparsed when they change.

● We elected not to support “import”, and
took the time to remove it from our
manifests.

Results

● Based on initial testing on a lightly-loaded
staging environment, we expected around
70 seconds shaved off the average
agent run immediately after rollout.

Results

● Based on initial testing on a lightly-loaded
staging environment, we expected around
70 seconds shaved off the average
agent run immediately after rollout.

● After deploying to production, we had
anecdotal speed improvements of up to
5 minutes on nodes with complex
catalogs.

Limitations

● Our initial implementation does not
correctly support the future parser.

Limitations

● Our initial implementation does not
correctly support the future parser.

● Reopening a class in a different file is not
supported.

Limitations

● Our initial implementation does not
correctly support the future parser.

● Reopening a class in a different file is not
supported.

● The use of “import” is not supported.

Limitations

● Our initial implementation does not
correctly support the future parser.

● Reopening a class in a different file is not
supported.

● The use of “import” is not supported.
● Native Ruby code (used for custom

functions) does not get reloaded.

Get the source

● https://github.com/AnchorCat/puppet/tree/anchor/3.7.3/inotify-reload

– Depends on a yet-unreleased version of rb-inotify,
but will work with the current master branch.

● OpenDocument sources for this presentation are
available under the WTFPL:

– http://steven.beta.anchortrove.com/lca2015/untangling_the_strings.odp

● Ruby inotify bindings:

– https://github.com/nex3/rb-inotify

https://github.com/AnchorCat/puppet/tree/anchor/3.7.3/inotify-reload
http://steven.beta.anchortrove.com/lca2015/untangling_the_strings.odp
https://github.com/nex3/rb-inotify

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

